For highly automated driving above SAE level 3, behavior generation algorithms must reliably consider the inherent uncertainties of the traffic environment, e.g. arising from the variety of human driving styles. Such uncertainties can generate ambiguous decisions, requiring the algorithm to appropriately balance low-probability hazardous events, e.g. collisions, and high-probability beneficial events, e.g. quickly crossing the intersection. State-of-the-art behavior generation algorithms lack a distributional treatment of decision outcome. This impedes a proper risk evaluation in ambiguous situations, often encouraging either unsafe or conservative behavior. Thus, we propose a two-step approach for risk-sensitive behavior generation combining offline distribution learning with online risk assessment. Specifically, we first learn an optimal policy in an uncertain environment with Deep Distributional Reinforcement Learning. During execution, the optimal risksensitive action is selected by applying established risk criteria, such as the Conditional Value at Risk, to the learned stateaction return distributions. In intersection crossing scenarios, we evaluate different risk criteria and demonstrate that our approach increases safety, while maintaining an active driving style. Our approach shall encourage further studies about the benefits of risk-sensitive approaches for self-driving vehicles.
Predicting and planning interactive behaviors in complex traffic situations presents a challenging task. Especially in scenarios involving multiple traffic participants that interact densely, autonomous vehicles still struggle to interpret situations and to eventually achieve their own driving goal. As driving tests are costly and challenging scenarios are hard to find and reproduce, simulation is widely used to develop, test, and benchmark behavior models. However, most simulations rely on datasets and simplistic behavior models for traffic participants and do not cover the full variety of real-world, interactive human behaviors. In this work, we introduce BARK, an open-source behavior benchmarking environment designed to mitigate the shortcomings stated above. In BARK, behavior models are (re-)used for planning, prediction, and simulation. A range of models is currently available, such as Monte-Carlo Tree Search and Reinforcement Learning-based behavior models. We use a public dataset and sampling-based scenario generation to show the inter-exchangeability of behavior models in BARK. We evaluate how well the models used cope with interactions and how robust they are towards exchanging behavior models. Our evaluation shows that BARK provides a suitable framework for a systematic development of behavior models.
Interaction-aware planning for autonomous driving requires an exploration of a combinatorial solution space when using conventional search-or optimization-based motion planners. With Deep Reinforcement Learning, optimal driving strategies for such problems can be derived also for higherdimensional problems. However, these methods guarantee optimality of the resulting policy only in a statistical sense, which impedes their usage in safety critical systems, such as autonomous vehicles. Thus, we propose the Experience-Based-Heuristic-Search algorithm, which overcomes the statistical failure rate of a Deep-reinforcement-learning-based planner and still benefits computationally from the pre-learned optimal policy. Specifically, we show how experiences in the form of a Deep Q-Network can be integrated as heuristic into a heuristic search algorithm. We benchmark our algorithm in the field of path planning in semi-structured valet parking scenarios. There, we analyze the accuracy of such estimates and demonstrate the computational advantages and robustness of our method. Our method may encourage further investigation of the applicability of reinforcement-learning-based planning in the field of self-driving vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.