The extracellular matrix (ECM) of soft tissues in vivo has remarkable biological and structural properties. Thereby, the ECM provides mechanical stability while it still can be rearranged via cellular remodeling during tissue maturation or healing processes. However, modern synthetic alternatives fail to provide these key features among basic properties. Synthetic matrices are usually completely degraded or are inert regarding cellular remodeling. Based on a refined electrospinning process, a method is developed to generate synthetic scaffolds with highly porous fibrous structures and enhanced fiber‐to‐fiber distances. Since this approach allows for cell migration, matrix remodeling, and ECM synthesis, the scaffold provides an ideal platform for the generation of soft tissue equivalents. Using this matrix, an electrospun‐based multilayered skin equivalent composed of a stratified epidermis, a dermal compartment, and a subcutis is able to be generated without the use of animal matrix components. The extension of classical dense electrospun scaffolds with high porosities and motile fibers generates a fully synthetic and defined alternative to collagen‐gel‐based tissue models and is a promising system for the construction of tissue equivalents as in vitro models or in vivo implants.
Porous Fibrous Scaffolds The dimensions of electrospun fibers are predestined for synthetic replacement of extracellular matrix structures. In article number 2106780, Tobias Weigel and co‐workers generate highly porous electrospun scaffolds, featuring an ensemble of loose fibers and pores of appropriate size to enable applications in engineering animal‐free 3D biomedical tissues. The mechanical properties and structural composition describe a tradeoff between current synthetic porous scaffolds and animal‐derived hydrogels, which are deployed as electrospun‐based multilayered skin equivalents.
The foreign body reaction to neuronal electrode implants limits potential applications as well as the therapeutic period. Developments in the basic electrode design might improve the tissue compatibility and thereby reduce the foreign body reaction. In this work, the approach of embedding 3D carbon nanofiber electrodes in extracellular matrix (ECM) synthesized by human fibroblasts for a compatible connection to neuronal cells was investigated. Porous electrode material was manufactured by solution coelectrospinning of polyacrylonitrile and polyamide as a fibrous porogen. Moreover, NaCl represented an additional particulate porogen. To achieve the required conductivity for an electrical interface, meshes were carbonized. Through the application of two different porogens, the electrodes’ flexibility and porosity was improved. Human dermal fibroblasts were cultured on the electrode surface for ECM generation and removed afterwards. Scanning electron microscopy imaging revealed a nano fibrous ECM network covering the carbon fibers. The collagen amount of the ECM coating was quantified by hydroxyproline-assays. The modification with the natural protein coating on the electrode functionality resulted in a minor increase of the electrical capacity, which slightly improved the already outstanding electrical interface properties. Increased cell numbers of SH-SY5Y cell line on ECM-modified electrodes demonstrated an improved cell adhesion. During cell differentiation, the natural ECM enhanced the formation of neurites regarding length and branching. The conducted experiments indicated the prevention of direct cell-electrode contacts by the modification, which might help to shield temporary the electrode from immunological cells to reduce the foreign body reaction and improve the electrodes’ tissue integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.