Antimicrobial resistance is a global health crisis and few novel antimicrobials have been discovered in recent decades. Natural products, particularly from Streptomyces, are the source of most antimicrobials, yet discovery campaigns focusing on Streptomyces from the soil largely rediscover known compounds. Investigation of understudied and symbiotic sources has seen some success, yet no studies have systematically explored microbiomes for antimicrobials. Here we assess the distinct evolutionary lineages of Streptomyces from insect microbiomes as a source of new antimicrobials through large-scale isolations, bioactivity assays, genomics, metabolomics, and in vivo infection models. Insect-associated Streptomyces inhibit antimicrobial-resistant pathogens more than soil Streptomyces. Genomics and metabolomics reveal their diverse biosynthetic capabilities. Further, we describe cyphomycin, a new molecule active against multidrug resistant fungal pathogens. The evolutionary trajectories of Streptomyces from the insect microbiome influence their biosynthetic potential and ability to inhibit resistant pathogens, supporting the promise of this source in augmenting future antimicrobial discovery.
The emergence of multidrug-resistant bacteria and the limited availability of new antibiotics are of increasing clinical concern. A compounding factor is the ability of microorganisms to form biofilms (communities of cells encased in a protective extracellular matrix) that are intrinsically resistant to antibiotics. Enterococcus faecalis is an opportunistic pathogen that readily forms biofilms and also has the propensity to acquire resistance determinants via horizontal gene transfer. There is intense interest in the genetic basis for intrinsic and acquired antibiotic resistance in E. faecalis, since clinical isolates exhibiting resistance to multiple antibiotics are not uncommon. We performed a genetic screen using a library of transposon (Tn) mutants to identify E. faecalis biofilm-associated antibiotic resistance determinants. Five Tn mutants formed wild-type biofilms in the absence of antibiotics but produced decreased biofilm biomass in the presence of antibiotic concentrations that were subinhibitory to the parent strain. Genetic determinants responsible for biofilm-associated antibiotic resistance include components of the quorum-sensing system (fsrA, fsrC, and gelE) and two glycosyltransferase (GTF) genes (epaI and epaOX). We also found that the GTFs play additional roles in E. faecalis resistance to detergent and bile salts, maintenance of cell envelope integrity, determination of cell shape, polysaccharide composition, and conjugative transfer of the pheromone-inducible plasmid pCF10. The epaOX gene is located in a variable extended region of the enterococcal polysaccharide antigen (epa) locus. These data illustrate the importance of GTFs in E. faecalis adaptation to diverse growth conditions and suggest new targets for antimicrobial design.
Resources available in the human nasal cavity are limited. Therefore, to successfully colonize the nasal cavity, bacteria must compete for scarce nutrients. Competition may occur directly through interference (e.g., antibiotics) or indirectly by nutrient sequestration. To investigate the nature of nasal bacterial competition, we performed coculture inhibition assays between nasal Actinobacteria and Staphylococcus spp. We found that isolates of coagulase-negative staphylococci (CoNS) were sensitive to growth inhibition by Actinobacteria but that Staphylococcus aureus isolates were resistant to inhibition. Among Actinobacteria, we observed that Corynebacterium spp. were variable in their ability to inhibit CoNS. We sequenced the genomes of 10 Corynebacterium species isolates, including 3 Corynebacterium propinquum isolates that strongly inhibited CoNS and 7 other Corynebacterium species isolates that only weakly inhibited CoNS. Using a comparative genomics approach, we found that the C. propinquum genomes were enriched in genes for iron acquisition and harbored a biosynthetic gene cluster (BGC) for siderophore production, absent in the noninhibitory Corynebacterium species genomes. Using a chrome azurol S assay, we confirmed that C. propinquum produced siderophores. We demonstrated that iron supplementation rescued CoNS from inhibition by C. propinquum, suggesting that inhibition was due to iron restriction through siderophore production. Through comparative metabolomics and molecular networking, we identified the siderophore produced by C. propinquum as dehydroxynocardamine. Finally, we confirmed that the dehydroxynocardamine BGC is expressed in vivo by analyzing human nasal metatranscriptomes from the NIH Human Microbiome Project. Together, our results suggest that bacteria produce siderophores to compete for limited available iron in the nasal cavity and improve their fitness. IMPORTANCE Within the nasal cavity, interference competition through antimicrobial production is prevalent. For instance, nasal Staphylococcus species strains can inhibit the growth of other bacteria through the production of nonribosomal peptides and ribosomally synthesized and posttranslationally modified peptides. In contrast, bacteria engaging in exploitation competition modify the external environment to prevent competitors from growing, usually by hindering access to or depleting essential nutrients. As the nasal cavity is a nutrient-limited environment, we hypothesized that exploitation competition occurs in this system. We determined that Corynebacterium propinquum produces an iron-chelating siderophore, and this iron-sequestering molecule correlates with the ability to inhibit the growth of coagulasenegative staphylococci. Furthermore, we found that the genes required for siderophore production are expressed in vivo. Thus, although siderophore production by Citation Stubbendieck RM, May DS, Chevrette MG, Temkin MI, Wendt-Pienkowski E, Cagnazzo J, Carlson CM, Gern JE, Currie CR. 2019. Competition among nasal bacteria suggests a rol...
19Resources available in the human nasal cavity are limited. Therefore, to successfully 20 colonize the nasal cavity, bacteria must compete for scarce nutrients. Competition may 21 occur directly through interference (e.g., antibiotics) or indirectly by nutrient 22 sequestration. To investigate the nature of nasal bacterial competition, we performed 23 co-culture inhibition assays between nasal Actinobacteria and Staphylococcus spp. We 24 found that Staphylococcus epidermidis isolates were sensitive to growth inhibition by 25 Actinobacteria but Staphylococcus aureus isolates were resistant to inhibition. Among 26 Actinobacteria, we observed that Corynebacterium spp. were variable in their ability to 27 inhibit S. epidermidis. We sequenced the genomes of ten Corynebacterium spp. 28 isolates, including three Corynebacterium propinquum that strongly inhibited S. 29 epidermidis and seven other Corynebacterium spp. isolates that only weakly inhibited S. 30 epidermidis. Using a comparative genomics approach, we found that the C. propinquum 31 genomes were enriched in genes for iron acquisition and encoded a biosynthetic gene 32 cluster (BGC) for siderophore production, absent in the non-inhibitory Corynebacterium 33 spp. genomes. Using a chromeazurol S assay, we confirmed that C. propinquum 34 produced siderophores. We demonstrated that iron supplementation rescued S. 35 epidermidis from inhibition by C. propinquum, suggesting that inhibition was due to iron 36 restriction through siderophore production. Using comparative metabolomics, we 37 identified the siderophore produced by C. propinquum as dehydroxynocardamine. 38
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.