The pathology of Plasmodium falciparum malaria is largely defined by the cytoadhesion of infected erythrocytes to the microvascular endothelial lining. The complexity of the endothelial surface and the large range of interactions available for the infected erythrocyte via parasite-encoded adhesins make analysis of critical contributions during cytoadherence challenging to define. Here, we have explored supported membranes functionalized with two important adhesion receptors, ICAM1 or CD36, as a quantitative biomimetic surface to help understand the processes involved in cytoadherence. Parasitized erythrocytes bound to the receptor-functionalized membranes with high efficiency and selectivity under both static and flow conditions, with infected wild-type erythrocytes displaying a higher binding capacity than do parasitized heterozygous sickle cells. We further show that the binding efficiency decreased with increasing intermolecular receptor distance and that the cell-surface contacts were highly dynamic and increased with rising wall shear stress as the cell underwent a shape transition. Computer simulations using a deformable cell model explained the wall-shear-stress-induced dynamic changes in cell shape and contact area via the specific physical properties of erythrocytes, the density of adhesins presenting knobs, and the lateral movement of receptors in the supported membrane.
Coarse-scale and nanoscopic interfacial force measurements unraveled how dendronized oligoethylene glycols with phosphonate tweezers prevent non-specific cell adhesion to oxide surfaces.
As manifested in biological cell membranes, the confinement of chemical reactions at the 2D interfaces significantly improves the reaction efficacy. The interface between two liquid phases is used in various key processes in industries, such as in food emulsification and floatation. However, monitoring the changes in the mechanics and dynamics of molecules confined at the liquid/liquid interfaces still remains a scientific challenge because it is nontrivial to access the interface buried under a liquid phase. Herein, we report the in situ monitoring of the cross-linking of polyalginate mediated by Ca 2+ ions at the oil/water interface by grazing incidence X-ray photon correlation spectroscopy (GIXPCS). We first optimized the reaction conditions with the aid of interfacial shear rheology and then performed GIXPCS using a high-energy synchrotron X-ray beam (22 keV) that guarantees sufficiently high transmittance through the oil phase. The intensity autocorrelation functions implied that the formation of a percolated network of polyalginate is accompanied by increasing relaxation time. Moreover, the relaxation rate scales linearly with the momentum transfer parallel to the interface, suggesting that the process is driven by hyperdiffusive propagation but not by Brownian diffusion. Our data indicated that high-energy GIXPCS has potential for in situ monitoring of changes in the dynamics of polymers confined between two liquid phases.
While
there is ample evidence suggesting that carriers of heterozygous
hemoglobin S and C are protected from life-threatening malaria, little
is known about the underlying biochemical mechanisms at the single
cell level. Using nanofocused scanning X-ray fluorescence microscopy,
we quantify the spatial distribution of individual elements in subcellular
compartments, including Fe, S, P, Zn, and Cu, in Plasmodium
falciparum-infected (P. falciparum-infected)
erythrocytes carrying the wild type or variant hemoglobins. Our data
indicate that heterozygous hemoglobin S and C significantly modulate
biochemical reactions in parasitized erythrocytes, such as aberrant
hemozoin mineralization and a delay in hemoglobin degradation. The
label-free scanning X-ray fluorescence imaging has great potential
to quantify the spatial distribution of elements in subcellular compartments
of P. falciparum-infected erythrocytes and unravel
the biochemical mechanisms underpinning disease and protective traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.