Pelagic marine Thaumarchaea play a primary role in ammonia oxidation, an integral part of nitrification and the nitrogen cycle. This study examines how physicochemical and biological variables influence rates of nitrification and the distribution, abundance and activity of ammonia oxidizers throughout the dark northeast Pacific Ocean. Nitrification rates are highest near the epipelagic-upper mesopelagic transition and decrease with depth according to a Martin-like power function, suggestive of a coupling to the organic matter flux. In contrast, archaeal and bacterial ammonia monooxygenase (amoA) gene abundance remains fairly constant throughout the upper mesopelagic. Density-based composites reveal nitrification to be highest in the upper pycnocline, within the nitrate:silica and ammonium maxima, while ammonia-oxidizing archaea (AOA) abundances are highest in the lower pycnocline. Water column group A (WCA) and B (WCB) AOA amoA genes are present throughout the dark ocean but have no relationship to nitrification rates. WCA comprise the majority of the AOA community above 200 m and WCB comprise the majority of it below 500 m, largely because WCA abundances decrease precipitously from 200 m to 500 m. WCA and WCB amoA genes are actively transcribed throughout the dark ocean, irrespective of conditions. Thaumarchaeal urease (ureC) genes are also present throughout, implying a widespread capacity for mixotrophy; however, unlike amoA, their expression is not detectable. Together, the results support a strong linkage between organic matter flux and nitrification rates, identify density as an important control over AOA distributions, and suggest that WCA and WCB distributions are influenced by the availability of their preferred substrates in the dark ocean.
Dissolved organic nitrogen (DON) can account for a large fraction of the dissolved nitrogen (N) pool in the ocean, but the cycling of marine DON is poorly understood. Recent discoveries that urea-and cyanate-N can be oxidized by some strains of Thaumarchaeota suggest that these abundant microbes may be able to access and oxidize a fraction of the DON pool. However, measurements of the oxidation of N supplied as DON compounds are scarce. Here, we compare oxidation rates of N supplied as a variety of DON compounds in samples from Georgia coastal waters, where nitrifier communities are numerically dominated by Thaumarchaeota. Our data indicate that polyamine-N is particularly amenable to oxidation compared to the other DON compounds tested. Oxidation of N supplied as putrescine (1,4-diaminobutane) was generally higher than that of N supplied as glutamate, arginine, or urea, and was consistently 5-10% of the ammonia oxidation rate. Our data also suggest that the oxidation rate of polyamine-N may increase as the length of the carbon skeleton increases. Oxidation of N supplied as putrescine, urea, and glutamate were all highest near the coast and lower further offshore, consistent with patterns of ammonia oxidation in these waters. Though it is unclear whether oxidation of polyamine-N reflects direct oxidation by Thaumarchaeota or combines remineralization and subsequent ammonia oxidation, more rapid oxidation of N from putrescine compared to amino acids or urea suggests that polyamine-N may contribute significantly to nitrification in the ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.