Sustainability is a key concept in economic and policy debates. Nevertheless, it is usually treated only in a qualitative way and has eluded quantitative analysis. Here, we propose a sustainability index based on the premise that sustainable systems do not lose or gain Fisher Information over time. We test this approach using time series data from the AmeriFlux network that measures ecosystem respiration, water and energy fluxes in order to elucidate two key sustainability features: ecosystem health and stability. A novel definition of ecosystem health is developed based on the concept of criticality, which implies that if a system’s fluctuations are scale invariant then the system is in a balance between robustness and adaptability. We define ecosystem stability by taking an information theory approach that measures its entropy and Fisher information. Analysis of the Ameriflux consortium big data set of ecosystem respiration time series is contrasted with land condition data. In general we find a good agreement between the sustainability index and land condition data. However, we acknowledge that the results are a preliminary test of the approach and further verification will require a multi-signal analysis. For example, high values of the sustainability index for some croplands are counter-intuitive and we interpret these results as ecosystems maintained in artificial health due to continuous human-induced inflows of matter and energy in the form of soil nutrients and control of competition, pests and disease.
Soil organic carbon (SOC) information is fundamental for improving global carbon cycle modeling efforts, but discrepancies exist from country‐to‐global scales. We predicted the spatial distribution of SOC stocks (topsoil; 0–30 cm) and quantified modeling uncertainty across Mexico and the conterminous United States (CONUS). We used a multisource SOC dataset (>10 000 pedons, between 1991 and 2010) coupled with a simulated annealing regression framework that accounts for variable selection. Our model explained ~50% of SOC spatial variability (across 250‐m grids). We analyzed model variance, and the residual variance of six conventional pedotransfer functions for estimating bulk density to calculate SOC stocks. Two independent datasets confirmed that the SOC stock for both countries represents between 46 and 47 Pg with a total modeling variance of ±12 Pg. We report a residual variance of 10.4 ±5.1 Pg of SOC stocks calculated from six pedotransfer functions for soil bulk density. When reducing training data to define decades with relatively higher density of observations (1991–2000 and 2001–2010, respectively), model variance for predicted SOC stocks ranged between 41 and 55 Pg. We found nearly 42% of SOC across Mexico in forests and 24% in croplands, whereas 31% was found in forests and 28% in croplands across CONUS. Grasslands and shrublands stored 29 and 35% of SOC across Mexico and CONUS, respectively. We predicted SOC stocks >30% below recent global estimates that do not account for uncertainty and are based on legacy data. Our results provide insights for interpretation of estimates based on SOC legacy data and benchmarks for improving regional‐to‐global monitoring efforts.
We analyze the invasive potential of two Asian ambrosia beetles, Xyleborus glabratus and Euwallacea sp., into Mexico and the southern United States. The fungal symbionts of these beetles have been responsible for damage to trees of the family Lauraceae, including Persea americana and other non-cultivated tree species on both coasts of the United States. We estimate their potential threat using ecological niche modeling and spatial multi-criteria evaluation protocols to incorporate plant and beetle suitabilities as well as forest stress factors across Mexico. Mexico contains higher climatic and habitat suitability for X. glabratus than for Euwallacea sp. Within this country, the neotropical region is most vulnerable to invasion by both of these species. We also identify a corridor of potential invasion for X. glabratus along the Gulf of Mexico coast where most Lauraceae and native Xyleborus species are present; dispersal of either X. glabratus or Euwallacea sp. into this region would likely lead to major disease spread. However, the overall potential damage that these beetles can cause may be a function of how many reproductive hosts and how many other ambrosia beetles are present, as well as of their capacity to disperse. This work can also alert relevant managers and authorities regarding this threat.
The integration of empirical, remote sensing and modelling approaches enhances insight in the role of biodiversity in climate change mitigation by tropical forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.