Despite many advances toward improving the stability of organic photovoltaic devices, environmental degradation under ambient conditions remains a challenging obstacle for future application. Particularly conventional systems employing fullerene derivatives are prone to oxidize under illumination, limiting their applicability. Here, the environmental stability of the small molecule donor DRCN5T together with the fullerene acceptor PC 70 BM is reported. It is found that this system exhibits exceptional device stability, mainly due to almost constant short-circuit current. By employing ultrafast femtosecond transient absorption spectroscopy, this remarkable stability is attributed to two separate mechanisms: 1) DRCN5T exhibits high intrinsic resistance toward external factors, showing no signs of deterioration.2) The highly sensitive PC 70 BM is stabilized against degradation by the presence of DRCN5T through ultrafast, long-range energy transfer to the donor, rapidly quenching the fullerene excited states which are otherwise precursors for chemical oxidation. It is proposed that this photoprotective mechanism be utilized to improve the device stability of other systems, including nonfullerene acceptors and ternary blends.
Engineering the energetics of perovskite photovoltaic devices through the deliberate introduction of dipoles to control the built-in potential of the devices offers the opportunity to enhance their performance without the need to modify the active layer itself. In this work, we demonstrate how the incorporation of molecular dipoles into the bathocuproine (BCP) hole-blocking layer of inverted perovskite solar cells improves the device open-circuit voltage (VOC) and consequently, its performance. We explore a series of four thiaazulenic derivatives that exhibit increasing dipole moments and demonstrate that these molecules can be introduced into the solution-processed BCP layer to effectively increase the built-in potential within the device, without altering any of the other device layers. As a result the VOC of the devices is enhanced by up to 130 mV with larger dipoles resulting in higher VOCs. To investigate the limitations of this approach, we employ numerical device simulations that demonstrate that the highest dipole derivatives used in this work eliminate all limitations on the VOC stemming from the built-in potential of the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.