BackgroundRegional variability of longitudinal strain (LS) has been previously described with echocardiography in patients with cardiac amyloidosis (CA), however, the reason for this variability is not completely evident. We sought to describe regional patterns in LS using feature-tracking software applied to cardiovascular magnetic resonance (CMR) cine images in patients with CA, hypertrophic cardiomyopathy (HCM), and Anderson-Fabry’s disease (AFD) and to relate these patterns to the distribution of late gadolinium enhancement (LGE).MethodsPatients with CA (n = 45) were compared to LV mass indexed matched patients with HCM (n = 19) and AFD (n = 19). Peak systolic LS measurements were obtained using Velocity Vector Imaging (VVI) software on CMR cine images. A relative regional LS ratio (RRSR) was calculated as the ratio of the average of the apical segmental LS divided by the sum of the average basal and mid-ventricular segmental LS. LGE was quantified for the basal, mid, and apical segments using a threshold of 5SD above remote myocardium. A regional LGE ratio was calculated similar to RRSR.ResultsPatients with CA had significantly had worse global LS (−15.7 ± 4.6%) than those with HCM (−18.0 ± 4.6%, p = 0.046) and AFD (−21.9 ± 5.1%, p < 0.001). The RRSR was higher in patients with CA (1.00 ± 0.31) than in AFD (0.79 ± 0.24; p = 0.018) but not HCM (0.84 ± 0.32; p = 0.114). In CA, a regional difference in LGE burden was noted, with lower LGE in the apex (31.5 ± 19.1%) compared to the mid (38.2 ± 19.0%) and basal (53.7 ± 22.7%; p < 0.001 for both) segments. The regional LGE ratio was not significantly different between patients with CA (0.33 ± 0.15) and AFD (0.47 ± 0.58; p = 0.14) but lower compared to those with HCM (0.72 ± 0.43; p < 0.0001). LGE percentage showed a significant impact on LS (p < 0.0001), with a 0.9% decrease in absolute LS for every 10% increase in LGE percentage.ConclusionThe presence of marked “relative apical sparing” of LS along with a significant reduction in global LS seen in patients with CA on CMR cine analysis may provide an additional tool to differentiate CA from other cause of LVH. The concomitant presence of a base to apex gradient in quantitative LGE burden suggests that the regional strain gradient may be at least partially explained by the burden of amyloid deposition and fibrosis.
Despite nearly a century of research and accounting for the highest disease burden of any parasitic disease in the Western Hemisphere, Chagas disease (CD) is still a challenging diagnosis, primarily due to its poor recognition outside of Latin America. Although initially considered endemic to Central and South America, globalization, urbanization, and increased migration have spread the disease worldwide in the last few years, making it a significant public health threat. The international medical community’s apparent lack of interest in this disease that was previously thought to be geographically restricted has delayed research on the complex host–parasite relationship that determines myocardial involvement and its differential behavior from other forms of cardiomyopathy, particularly regarding treatment strategies. Multiple cellular and molecular mechanisms that contribute to degenerative, inflammatory, and fibrotic myocardial responses have been identified and warrant further research to expand the therapeutic arsenal and impact the high burden attributed to CD. Altogether, cardiac dysautonomia, microvascular disturbances, parasite-mediated myocardial damage, and chronic immune-mediated injury are responsible for the disease’s clinical manifestations, ranging from asymptomatic disease to severe cardiac and gastrointestinal involvement. It is crucial for healthcare workers to better understand CD transmission and disease dynamics, including its behavior on both its acute and chronic phases, to make adequate and evidence-based decisions regarding the disease. This review aims to summarize the most recent information on the epidemiology, pathogenesis, clinical presentation, diagnosis, screening, and treatment of CD, emphasizing on Chagasic cardiomyopathy’s (Ch-CMP) clinical presentation and pathobiological mechanisms leading to sudden cardiac death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.