Wearable sensors to continuously measure blood pressure and derived cardiovascular variables have the potential to revolutionize patient monitoring. Current wearable methods analyzing time components (e.g., pulse transit time) still lack clinical accuracy, whereas existing technologies for direct blood pressure measurement are too bulky. Here we present an innovative art of continuous noninvasive hemodynamic monitoring (CNAP2GO). It directly measures blood pressure by using a volume control technique and could be used for small wearable sensors integrated in a finger-ring. As a software prototype, CNAP2GO showed excellent blood pressure measurement performance in comparison with invasive reference measurements in 46 patients having surgery. The resulting pulsatile blood pressure signal carries information to derive cardiac output and other hemodynamic variables. We show that CNAP2GO can self-calibrate and be miniaturized for wearable approaches. CNAP2GO potentially constitutes the breakthrough for wearable sensors for blood pressure and flow monitoring in both ambulatory and in-hospital clinical settings.
The CNAP system (CNSystems Medizintechnik AG, Graz, Austria) provides noninvasive continuous arterial pressure measurements by using the volume clamp method. Recently, an algorithm for the determination of cardiac output by pulse contour analysis of the arterial waveform recorded with the CNAP system became available. We evaluated the agreement of the continuous noninvasive cardiac output (CNCO) measurements by CNAP in comparison with cardiac output measurements invasively obtained using transpulmonary thermodilution (TDCO). In this proof-of-concept analysis we studied 38 intensive care unit patients from a previously set up database containing CNAP-derived arterial pressure data and TDCO values obtained with the PiCCO system (Pulsion Medical Systems SE, Feldkirchen, Germany). We applied the new CNCO algorithm retrospectively to the arterial pressure waveforms recorded with CNAP and compared CNCO with the corresponding TDCO values (criterion standard). Analyses were performed separately for (1) CNCO calibrated to the first TDCO (CNCO-cal) and (2) CNCO autocalibrated to biometric patient data (CNCO-auto). We did not perform an analysis of trending capabilities because the patients were hemodynamically stable. The median age and APACHE II score of the 22 male and 16 female patients was 63 years and 18 points, respectively. 18 % were mechanically ventilated and in 29 % vasopressors were administered. Mean ± standard deviation for CNCO-cal, CNCO-auto, and TDCO was 8.1 ± 2.7, 6.4 ± 1.9, and 7.8 ± 2.4 L/min, respectively. For CNCO-cal versus TDCO, Bland-Altman analysis demonstrated a mean difference of +0.2 L/min (standard deviation 1.0 L/min; 95 % limits of agreement -1.7 to +2.2 L/min, percentage error 25 %). For CNCO-auto versus TDCO, the mean difference was -1.4 L/min (standard deviation 1.8 L/min; 95 % limits of agreement -4.9 to +2.1 L/min, percentage error 45 %). This pilot analysis shows that CNCO determination is feasible in critically ill patients. A percentage error of 25 % indicates acceptable agreement between CNCO-cal and TDCO. The mean difference, the standard deviation, and the percentage error between CNCO-auto and TDCO were higher than between CNCO-cal and TDCO. A hyperdynamic cardiocirculatory state in a substantial number of patients and the hemodynamic stability making trending analysis impossible are main limitations of our study.
Wearable sensors to continuously measure blood pressure (BP) and derived cardiovascular variables have the potential to revolutionize patient monitoring. Current wearable methods analyzing time components (e.g., pulse transit time) still lack clinical accuracy, whereas existing technologies for direct BP measurement are too bulky. Here we present a new art of continuous non-invasive arterial blood pressure monitoring (CNAP2GO). It directly measures BP by using a new "volume control technique" and could be used for small wearable sensors integrated in a finger ring. As a software prototype, CNAP2GO showed excellent BP measurement performance in comparison with invasive BP in 46 patients having surgery. The resulting pulsatile BP signal carries information to derive cardiac output and other hemodynamic variables. We show that CNAP2GO can be miniaturized for wearable approaches. CNAP2GO potentially constitutes the breakthrough for wearable sensors for blood pressure and flow monitoring in both ambulatory and in-hospital clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.