In times of increasing weather extremes and expanding vulnerable cities, a significant risk to civilian security is posed by heavy rainfall induced flash floods. In contrast to river floods, pluvial flash floods can occur anytime, anywhere and vary enormously due to both terrain and climate factors. Current early warning systems (EWS) are based largely on measuring rainfall intensity or monitoring water levels, whereby the real danger due to urban torrential floods is just as insufficiently considered as the vulnerability of the physical infrastructure. For this reason, this article presents a concept for a risk-based EWS as one integral component of a multi-functional pluvial flood information system (MPFIS). Taking both the pluvial flood hazard as well as the damage potential into account, the EWS identifies the urban areas particularly affected by a forecasted heavy rainfall event and issues object-precise warnings in real-time. Further, the MPFIS performs a georeferenced documentation of occurred events as well as a systematic risk analysis, which at the same time forms the foundation of the proposed EWS. Based on a case study in the German city of Aachen and the event of 29 May 2018, the operation principle of the integrated information system is illustrated.
Using machine learning for pluvial flood prediction tasks has gained growing attention in the past years. In particular, data-driven models using artificial neuronal networks show promising results, shortening the computation times of physically based simulations. However, recent approaches have used mainly conventional fully connected neural networks which were (a) restricted to spatially uniform precipitation events and (b) limited to a small amount of input data. In this work, a deep convolutional generative adversarial network has been developed to predict pluvial flooding caused by nonlinear spatial heterogeny rainfall events. The model developed, floodGAN, is based on an image-to-image translation approach whereby the model learns to generate 2D inundation predictions conditioned by heterogenous rainfall distributions—through the minimax game of two adversarial networks. The training data for the floodGAN model was generated using a physically based hydrodynamic model. To evaluate the performance and accuracy of the floodGAN, model multiple tests were conducted using both synthetic events and a historic rainfall event. The results demonstrate that the proposed floodGAN model is up to 106 times faster than the hydrodynamic model and promising in terms of accuracy and generalizability. Therefore, it bridges the gap between detailed flood modelling and real-time applications such as end-to-end early warning systems.
This study presents a deep-learning-based forecast model for spatial and temporal prediction of pluvial flooding. The developed model can produce the flooding situation for the upcoming time steps as a sequence of flooding maps. Thus, a dynamic overview of the forthcoming flooding situation is generated to support the decision of crisis management actors. The influence of different input data, data formats, and model setups on the prediction results was investigated. Data from multiple sources were considered as follows: precipitation information, spatial information, and an overflow forecast. In addition, models with different layers and network architectures such as convolutional layers, graph convolutional layers, or generative adversarial networks (GANs) were considered and evaluated. The data required to train and test the models were generated using a coupled hydrodynamic 1D/2D model. The model setup with the inclusion of all available input variables and an architecture with graph convolutional layers presented, in general, the best results in terms of root mean square error (RMSE) and critical success index (CSI). The prediction results of the final model showed a high agreement with the simulation results of the hydrodynamic model, with drastic reductions in computation time, making this model suitable for integration into an early warning system for pluvial flooding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.