Owing to the high abundance and gravimetric capacity (1165.78 mAh g−1) of pure sodium, it is considered as a promising candidate for the anode of next‐generation batteries. However, one major challenge needs to be solved before commercializing the sodium metal anode: The growth of dendrites during metal plating. One possibility to address this challenge is to use additives in the electrolyte to form a protective solid electrolyte interphase on the anode surface. In this work, we introduce a diamondoid‐based additive, which is incorporated into the anode to target this problem. Combining operando and ex situ experiments (electrochemical impedance spectroscopy, optical characterization, and cycling experiments), we show that molecular diamondoids are incorporated into the anode during cycling and successfully mitigate the growth of dendrites. Furthermore, we demonstrate the positive effect of the additive on the operation of sodium‐oxygen batteries by means of increased energy density.
Conversion/alloy active materials, such as ZnO, are one of the most promising candidates to replace graphite anodes in lithium-ion batteries. Besides a high specific capacity (q ZnO = 987 mAh g–1), ZnO offers a high lithium-ion diffusion and fast reaction kinetics, leading to a high-rate capability, which is required for the intended fast charging of battery electric vehicles. However, lithium-ion storage in ZnO is accompanied by the formation of lithium-rich solid electrolyte interphase (SEI) layers, immense volume expansion, and a large voltage hysteresis. Nonetheless, ZnO is appealing as an anode material for lithium-ion batteries and is investigated intensively. Surprisingly, the conclusions reported on the reaction mechanism are contradictory and the formation and composition of the SEI are addressed in only a few works. In this work, we investigate lithiation, delithiation, and SEI formation with ZnO in ether-based electrolytes for the first time reported in the literature. The combination of operando and ex situ experiments (cyclic voltammetry, X-ray photoelectron spectroscopy, X-ray diffraction, coupled gas chromatography and mass spectrometry, differential electrochemical mass spectrometry, and scanning electron microscopy) clarifies the misunderstanding of the reaction mechanism. We evidence that the conversion and alloy reaction take place simultaneously inside the bulk of the electrode. Furthermore, we show that a two-layered SEI is formed on the surface. The SEI is decomposed reversibly upon cycling. In the end, we address the issue of the volume expansion and associated capacity fading by incorporating ZnO into a mesoporous carbon network. This approach reduces the capacity fading and yields cells with a specific capacity of above 500 mAh g–1 after 150 cycles.
Zinc−oxygen batteries are seen as promising energy storage devices for future mobile and stationary applications. Introducing them as secondary battery is hindered by issues at both the anode and cathode. Research efforts were intensified during the past two decades, mainly focusing on catalyst materials for the cathode. Thereby, zinc foil was almost exclusively used as the anode in electrochemical testing in the lab-scale as it is easy to apply and shall yield reproducible results. However, it is well known that zinc metal reacts with water within the electrolyte to form hydrogen. It is not yet clear how the evolution of hydrogen is affecting the performance results obtained thereof. Herein, we extend the studies and the understanding about the evolution of hydrogen at zinc by analyzing the zinc−oxygen battery during operation. By means of electrochemical measurements, operando gas analysis, and anode surface analysis, we elucidate that the rate of the evolution of hydrogen scales with the current density applied, and that the roughness of the anode surface, that is, the pristine state of the zinc foil surface, affects the rate as well. In the end, we propose a link between the evolution of hydrogen and the unwanted impact on the actual electrochemical performance that might go unnoticed during testing. Thereof, we elucidate the consequences that arise for the working principle and the testing of materials for this battery type.
Electrically rechargeable zinc oxygen batteries are promising energy storage devices. They appeal due to the abundance of zinc metal and their high energy density. Research on zinc oxygen batteries is currently focusing on the development of electrode materials. Since the progress is rapid and no state-of-the-art is agreed upon yet, it is difficult to benchmark their performance. This circumstance also complicates the use of the generated electrochemical data for model-based research – simulating the processes in the battery requires reliable performance data and material properties from experimental investigations. Herein we describe reproducible data on the cycling performance and durability of zinc oxygen batteries. We utilize anodes and gas diffusion electrodes (with the bifunctional catalysts Sr2CoO3Cl, Ru-Sn oxide, and Fe0.1Ni0.9Co2O4 with activated carbon) with low degradation during cycling, and present voltage data of current-dependent discharge and charge. All in all, we stimulate to reuse the data for parameter fitting in model-based work, and also to evaluate novel battery materials by preventing or minimizing side reactions with the testing protocol and setup utilized.
Using sodium metal in sodium-oxygen batteries with aprotic electrolyte enables achieving a very high theoretical energy density. However, the promised values for energy density and capacity are not met in practical studies yet due to poor utilization of the void space in the cathode during battery discharge. In this work, we achieve better cathode utilization and higher discharge capacities by using pulse discharging. We optimize the chosen resting-to-pulse times, the applied current density, and elucidate that three-dimensional cathode materials yield higher capacities compared to two-dimensional ones. By implication, the pulse discharging mode ensures better supply with dissolved oxygen within the cathode. The higher amount of dissolved oxygen accumulated during the resting period after a current pulse is essential to form more of the discharge product, i.e., the metal oxide sodium superoxide. Interestingly, we show for the first time that the superoxide is deposited in a very unusual form of stacked and highly oriented crystal layers. Our findings on the pulse discharging can be transferred to other metal-oxygen battery systems and might assist in achieving their full potential regarding practical energy density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.