Additive manufacturing (AM) technologies, such as laser-based powder bed fusion of metals (PBF-LB/M), allow for the fabrication of complex parts due to their high freedom of design. PBF-LB/M is already used in several different industrial application fields, especially the automotive and aerospace industries. Nevertheless, the amount of materials being processed using AM technologies is relatively small compared to conventional manufacturing. Due to this, an extension of the material portfolio is necessary for fulfilling the demands of these industries. In this work, the AM of case-hardening steel 16MnCr5 using PBF-LB/M is investigated. In this context, the influences of different processing strategies on the final hardness of the material are studied. This includes, e.g., stress relief heat treatment and microstructure modification to increase the resulting grain size, thus ideally simplifying the carbon diffusion during case hardening. Furthermore, different heat treatment strategies (stress relief heat treatment and grain coarsening annealing) were applied to the as-built samples for modifying the microstructure and the effect on the final hardness of case-hardened specimens. The additively manufactured specimens are compared to conventionally fabricated samples after case hardening. Thus, an increase in both case-hardening depth and maximum hardness is observed for additively manufactured specimens, leading to superior mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.