Al-F bonds are among the most stable σ bonds known, exhibiting an even higher bond energy than Si-F bonds. Despite a stability advantage and a potentially high Lewis acidity of Al-F complexes, they have not been described as structurally defined catalysts for enantioselective reactions. We show that Al-F salen complexes with appended ammonium moieties give exceptional catalytic activity in asymmetric carboxycyanations. In addition to aromatic aldehydes, enal and aliphatic substrates are well accepted. Turnover numbers up to around 10 were achieved, whereas with previous catalysts 10 -10 turnovers were typically attained. In contrast to Al-Me and Al-Cl salen complexes, the analogous Al-F species are remarkably stable towards air, water, and heat, and can be recovered unchanged after catalysis. They possess a considerably increased Lewis acidity as shown by DFT calculations.
Australia’s endemic desert shrubs are commonly aromatic, with chemically diverse terpenes and phenylpropanoids in their headspace profiles. Species from the genus Eremophila (Scrophulariaceae ex. Myoporaceae) are the most common, with 215 recognised taxa and many more that have not yet been described, widely spread across the arid parts of the Australian continent. Over the years, our research team has collected multiple specimens as part of a survey to investigate the chemical diversity of the genus and create leads for further scientific enquiry. In the current study, the diversity of volatile compounds is studied using hydrodistilled essential oils and leaf solvent extracts from 30 taxa. Several rare terpenes and iridoids were detected in chemical profiles widely across the genus, and three previously undescribed sesquiterpenes were isolated and are assigned by 2D NMR—E-11(12)-dehydroisodendrolasin, Z-11-hydroxyisodendrolasin and 10-hydroxydihydro-α-humulene acetate. Multiple sampling from Eremophila longifolia, Eremophila arbuscular, Eremophila latrobei, Eremophila deserti, Eremophila sturtii, Eremophila oppositifolia and Eremophila alternifolia coneys that species in Eremophila are highly chemovariable. However, taxa are generally grouped according to the expression of (1) furanosesquiterpenes, (2) iridoids or oxides, (3) mixtures of 1 and 2, (4) phenylpropanoids, (5) non-furanoid terpenes, (6) mixtures of 4 and 5, and less commonly (7) mixtures of 1 and 5. Furthermore, GC–MS analysis of solvent-extracted leaves taken from cultivated specimens conveys that many heavier ‘volatiles’ with lower vapour pressure are not detected in hydrodistilled essential oils and have therefore been neglected in past chemical studies. Hence, our data reiterate that chemical studies of the genus Eremophila will continue to describe new metabolites and that taxon determination has limited predictive value for the chemical composition.
Asymmetric 1,2‐additions of cyanide yield enantioenriched cyanohydrins as versatile chiral building blocks. Next to HCN, volatile organic cyanide sources are usually used. Among them, cyanoformates are more attractive on technical scale than TMSCN for cost reasons, but catalytic productivity is usually lower. Here, the development of a new strategy for cyanations is described, in which this activity disadvantage is overcome. A Lewis acidic Al center cooperates with an aprotic onium moiety within a remarkably robust bifunctional Al–F–salen complex. This allowed for unprecedented turnover numbers of up to 104. DFT studies suggest an unexpected unique trimolecular pathway in which the ammonium bound cyanide attacks the aldehyde, which itself is activated by the carbonyl group of the cyanoformate binding to the Al center. In addition, a novel practical carboxycyanation method was developed that makes use of KCN as the sole cyanide source. The use of a pyrocarbonate as carboxylating reagent provided the best results.
A new family of chiral auxiliaries has been developed based on the lignocellulosic biomass pyrolysis product levoglucosenone. A promising single stereoisomer with an alcohol and π-stacking phenyl substituents was prepared in excellent yield in two steps from dihydrolevoglucosenone without chromatography on >50 g scale. Acrylate esters prepared from the auxiliaries underwent diastereoselective Lewis acid promoted Diels–Alder reactions with cyclopentadiene (endo/exo 98:2, endo d.r. up to 98:2), dimethylbutadiene (d.r. 93:7), and isoprene (d.r. > 98:2)
The reference-geometry Harris-Foulkes (RGHF) approach has been used to model high-order terms within the expansion of multi-dimensional potential energy surfaces (PES) as needed within the calculation of accurate vibrational frequencies beyond the harmonic approximation. The key step of this method is a localization of the electron density to the atoms of the molecule at a given reference structure and a subsequent transfer of these atom-centered partial densities to the atom positions of distorted structures. This concept has been used to evaluate the 3-mode coupling terms of a multi-mode expansion of the PES as arising in the Watson Hamiltonian. Systematic benchmark calculations for vibrational frequencies obtained from vibrational configuration interaction (VCI) theory have been performed in order to study the effects of this approximation on the fundamental modes of a test suite of 28 molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.