Drug-induced liver injury (DILI) is a leading cause of acute liver failure and the major reason for withdrawal of drugs from the market. Preclinical evaluation of drug candidates has failed to detect about 40% of potentially hepatotoxic compounds in humans. At the onset of liver injury in humans, currently used biomarkers have difficulty differentiating severe DILI from mild, and/or predict the outcome of injury for individual subjects. Therefore, new biomarker approaches for predicting and diagnosing DILI in humans are urgently needed. Recently, circulating microRNAs (miRNAs) such as miR-122 and miR-192 have emerged as promising biomarkers of liver injury in preclinical species and in DILI patients. In this study, we focused on examining global circulating miRNA profiles in serum samples from subjects with liver injury caused by accidental acetaminophen (APAP) overdose. Upon applying next generation high-throughput sequencing of small RNA libraries, we identified 36 miRNAs, including 3 novel miRNA-like small nuclear RNAs, which were enriched in the serum of APAP overdosed subjects. The set comprised miRNAs that are functionally associated with liver-specific biological processes and relevant to APAP toxic mechanisms. Although more patients need to be investigated, our study suggests that profiles of circulating miRNAs in human serum might provide additional biomarker candidates and possibly mechanistic information relevant to liver injury.
Powdery mildew (PM, caused by Podosphaera fusca) and downy mildew (DM, caused by Pseudoperonospora cubensis) are important diseases of cucumber (Cucumis sativus). Breeding for resistance has been undertaken since the 1940s, but underlying resistance genes have not been functionally analysed yet. The published genome sequence of cucumber catalyses the search for such genes. Genetic studies have indicated that resistances to PM and DM in cucumber are often inherited recessively, which indicates the presence of susceptibility genes (Sgenes). Therefore we analyzed the cucumber genome for homologs of functionally proven S-genes known from other plant species. We identified 13 MLO-like genes in cucumber, three of which cluster in Clade V, the clade that contains all known MLO-like susceptibility genes to powdery mildews in other dicots. The expression of one of these three genes, CsaMLO1, located on chromosome 1, was upregulated after PM inoculation. It co-localizes with a QTL for PM resistance previously identified. Also homologs of the susceptibility genes PMR4 and PMR5 are located at this QTL. The second MLO-like gene from Clade V (CsaMLO8) resides in a recessively inherited major QTL for PM resistance at the bottom of chromosome 5, together with a PMR6-like gene. Two major QTL for DM recessive resistance at the top of chromosome 5 co-localize with CsaDMR6-2, which is homologous to the DMR6 susceptibility gene in Arabidopsis. This study has identified several candidate genes for susceptibility to PM and DM in cucumber that may explain QTL for recessively inherited resistance, reported earlier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.