Background: Cardiac-specific JDP2 overexpression provokes ventricular dysfunction and atrial dilatation in mice. We performed in vivo studies on JDP2-overexpressing mice to investigate the impact of JDP2 on the predisposition to spontaneous atrial fibrillation (AF). Methods: JDP2-overexpression was started by withdrawal of a doxycycline diet in 4-week-old mice. The spontaneous onset of AF was documented by ECG within 4 to 5 weeks of JDP2 overexpression. Gene expression was analyzed by real-time RT-PCR and Western blots. Results: In atrial tissue of JDP2 mice, besides the 3.6-fold increase of JDP2 mRNA, no changes could be detected within one week of JDP2 overexpression. Atrial dilatation and hypertrophy, combined with elongated cardiomyocytes and fibrosis, became evident after 5 weeks of JDP2 overexpression. Electrocardiogram (ECG) recordings revealed prolonged PQ-intervals and broadened P-waves and QRS-complexes, as well as AV-blocks and paroxysmal AF. Furthermore, reductions were found in the atrial mRNA and protein level of the calcium-handling proteins NCX, Cav1.2 and RyR2, as well as of connexin40 mRNA. mRNA of the hypertrophic marker gene ANP, pro-inflammatory MCP1, as well as markers of immune cell infiltration (CD68, CD20) were increased in JDP2 mice. Conclusion: JDP2 is an important regulator of atrial calcium and immune homeostasis and is involved in the development of atrial conduction defects and arrhythmogenic substrates preceding paroxysmal AF.
Acute kidney injury is one of the most frequent and prognostically relevant complications in cardiogenic shock. The purpose of this study was to evaluate the potential effect of the Impella® pump on hemodynamics and renal organ perfusion in patients with myocardial infarction complicating cardiogenic shock. Between January 2020 and February 2022 patients with infarct-related cardiogenic shock supported with the Impella® pump were included in this single-center prospective short-term study. Changes in hemodynamics on different levels of Impella® support were documented with invasive pulmonal arterial catheter. As far as renal function is concerned, renal perfusion was assessed by determining the renal resistive index (RRI) using Doppler sonography. A total of 50 patients were included in the analysis. The increase in the Impella® output by a mean of 1.0 L/min improved the cardiac index (2.7 ± 0.86 to 3.3 ± 1.1 p < 0.001) and increased central venous oxygen saturation (62.6 ± 11.8% to 67.4 ± 10.5% p < 0.001). On the other side, the systemic vascular resistance (1035 ± 514 N·s/m5 to 902 ± 371 N·s/m5p = 0.012) and the RRI were significantly reduced (0.736 ± 0.07 to 0.62 ± 0.07 p < 0.001). Furthermore, in the overall cohort, a baseline RRI ≥ 0.8 was associated with a higher frequency of renal replacement therapy (71% vs. 39% p = 0.04), whereas the consequent reduction of the RRI below 0.7 during Impella® support improved the glomerular filtration rate (GFR) during hospital stay (15 ± 3 days; 53 ± 16 mL/min to 83 ± 16 mL/min p = 0.04). Impella® support in patients with cardiogenic shock seems to improve hemodynamics and renal organ perfusion. The RRI, a well-known parameter for the early detection of acute kidney injury, can be directly influenced by the Impella® flow rate. Thus, a targeted control of the RRI by the Impella® pump could mediate renal organ protection.
Recent studies show that hospitalized COVID-19 patients have an increased incidence of arrhythmia, especially atrial fibrillation (AF). This single-center study included 383 hospitalized patients with positive polymerase chain reaction tests for COVID-19 from March 2020 to April 2021. Patient characteristics were documented, and data were analyzed for episodes of AF on admission or during the hospital stay, intrahospital mortality, need for intensive care and/or invasive ventilation, inflammatory parameters (hs-CRP, IL-6, and procalcitonin), and differential blood count. We demonstrated that in the setting of hospitalized cases of COVID-19 infection, there is an incidence of 9.8% (n = 36) for the occurrence of new-onset AF. Furthermore, it was shown that a total of 21% (n = 77) had a history of episodes of paroxysmal/persistent AF. However, only about one-third of patients with pre-existing AF had relevant documented tachycardic episodes during the hospital stay. Patients with new-onset AF had a significantly increased intrahospital mortality compared to the control and the pre-existing AF without rapid ventricular rate (RVR) group. Patients with new-onset AF required intensive care and invasive ventilation more frequently. Further analysis examined patients with episodes of RVR and demonstrated that they had significantly elevated CRP (p < 0.05) and PCT (p < 0.05) levels on the day of hospital admission compared to patients without RVR.
This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.
This study aims at examining the chronological development of hospitalized cardiovascular and COVID-19 patients and comparing the effects on related sub-disciplines and main diagnoses for pre-pandemic (2017–2019) and pandemic (2020–2021) years in the setting of a German university maximum care provider. Data were retrospectively retrieved from the hospital performance controlling system for patient collectives with main diagnosis of diseases of the circulatory system (nCirculatory) and COVID-19 secondary diagnosis (nCOVID-19). The cardiovascular patient collective (nCirculatory = 25,157) depicts a steady state in terms of relative yearly development of patient numbers (+0.4%, 2019–2020, +0.1%, 2020–2021). Chronological assessment points towards monthly decline during lockdowns and phases of high regional incidence of COVID-19 (i.e., 2019–2020: March −10.2%, April −12.4%, December −14.8%). Main diagnoses of congestive heart failure (+16.1% 2019/2020; +19.2% 2019/2021) and acute myocardial infarction show an increase in case numbers over the course of the whole pandemic (+15.4% 2019/2020; +9.4% 2019/2021). The results confirm negative effects on the cardiovascular care situation during the entire pandemic in the setting of a university maximum care provider. A general increase in cardiac disorders and a worrisome turn in case development of acute myocardial infarction emphasize the feared cardiovascular burden of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.