This novel C-C bond formation reaction provides a new synthetic pathway for the preparation of phenanthrenequinone-type compounds and their derivatives, especially in view of the easy affordability of substituted benzil derivatives from the corresponding benzaldehydes.The evolution of the hydrogen gas was followed and measured. The rate of the gas evolution was found to be constant. This observation may indicate that the process is "layer-edge" controlled, i.e. the rate is determined by the surface area of the graphite lattice which contains ordered potassium atoms available for the reaction. This is consistent with the mechanism that we have previously described for the bimolecular reduction of ketoneslZb1. The mechanistic behavior of C8K reactions with ketones, diketones and their analogs is under further investigation.
No abstract
Lateral inhibition, mediated by Notch signaling, leads to the selection of cells that are permitted to become neurons within domains defined by proneural gene expression. Reduced lateral inhibition in zebrafish mib mutant embryos permits too many neural progenitors to differentiate as neurons. Positional cloning of mib revealed that it is a gene in the Notch pathway that encodes a RING ubiquitin ligase. Mib interacts with the intracellular domain of Delta to promote its ubiquitylation and internalization. Cell transplantation studies suggest that mib function is essential in the signaling cell for efficient activation of Notch in neighboring cells. These observations support a model for Notch activation where the Delta-Notch interaction is followed by endocytosis of Delta and transendocytosis of the Notch extracellular domain by the signaling cell. This facilitates intramembranous cleavage of the remaining Notch receptor, release of the Notch intracellular fragment, and activation of target genes in neighboring cells.
In many developing tissues, adjacent cells diverge in character so as to create a fine-grained pattern of cells in contrasting states of differentiation. It has been proposed that such patterns can be generated through lateral inhibition--a type of cell-cell interaction whereby a cell that adopts a particular fate inhibits its immediate neighbors from doing likewise. Lateral inhibition is well documented in flies, worms and vertebrates. In all of these organisms, the transmembrane proteins Notch and Delta (or their homologues) have been identified as mediators of the interaction--Notch as receptor, Delta as its ligand on adjacent cells. However, it is not clear under precisely what conditions the Delta-Notch mechanism of lateral inhibition can generate the observed types of pattern, or indeed whether this mechanism is capable of generating such patterns by itself. Here we construct and analyse a simple and general mathematical model of such contact-mediated lateral inhibition. In accordance with experimental data, the model postulates that receipt of inhibition (i.e. activation of Notch) diminished the ability to deliver inhibition (i.e. to produce active Delta). This gives rise to a feedback loop that can amplify differences between adjacent cells. We investigate the pattern-forming potential and temporal behaviour of this model both analytically and through numerical simulation. Inhomogeneities are self-amplifying and develop without need of any other machinery, provided the feedback is sufficiently strong. For a wide range of initial and boundary conditions, the model generates fine-grained patterns similar to those observed in living systems.
The product of the Delta gene, acting as ligand, and that of the Notch gene, acting as receptor, are key components in a lateral-inhibition signalling pathway that regulates the detailed patterning of many different tissues in Drosophila. During neurogenesis in particular, neural precursors, by expressing Delta, inhibit neighbouring Notch-expressing cells from becoming committed to a neural fate. Vertebrates are known to have several Notch genes, but their functions are unclear and their ligands hitherto unidentified. Here we identify and describe a chick Delta homologue, C-Delta-1. We show that C-Delta-1 is expressed in prospective neurons during neurogenesis, as new cells are being born and their fates decided. Our data from the chick, combined with parallel evidence from Xenopus, suggest that both the Delta/Notch signalling mechanism and its role in neurogenesis have been conserved in vertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.