Osteoporosis is a common aging-related disease diagnosed primarily using bone mineral density (BMD). We assessed genetic determinants of BMD as estimated by heel quantitative ultrasound (eBMD) in 426,824 individuals, identifying 518 genome-wide significant loci (301 novel), explaining 20% of its variance. We identified 13 bone fracture loci, all associated with eBMD, in ~1.2M individuals. We then identified target genes enriched for genes known to influence bone density and strength (maximum odds-ratio=58, p=10 −75 ) from cell-specific features, including chromatin conformation and accessible chromatin sites. We next performed rapid-throughput skeletal phenotyping of 126 knockout mice lacking target genes and found an increased abnormal skeletal phenotype frequency compared to 526 unselected lines (p<0.0001). In-depth analysis of one gene, DAAM2 , showed a disproportionate decrease in bone strength relative to mineralization. This genetic atlas provides evidence testing how to link associated-SNPs to causal genes, offers new insights into osteoporosis pathophysiology and highlights opportunities for drug development.
Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched ‘on' by engagement with bone-lining cells or osteoblasts, and switched ‘off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse.
ABSTRACT:With the aim of identifying new pathways and genes regulated by PTH(1-34) and PTH-related protein 1-141 ] in osteoblasts, this study was carried out using a mouse marrow stromal cell line, Kusa 4b10, that acquires features of the osteoblastic phenotype in long-term culture conditions. After the appearance of functional PTH receptor 1 (PTHR1) in Kusa 4b10 cells, they were treated with either PTH(1-34) or PTHrP(1-141), and RNA was subjected to Affymetrix whole mouse genome array. The microarray data were validated using quantitative real-time RT-PCR on independently prepared RNA samples from differentiated Kusa 4b10, UMR106 osteosarcoma cells, and primary mouse calvarial osteoblasts, as well as in vivo using RNA from metaphyseal bone after a single PTH injection to 3-wk-old and 6-mo-old ovariectomized rats. Of the 45,101 probes used on the microarray, 4675 were differentially expressed by Ն1.5 fold, with a false discovery rate <0.1. Among the regulated genes, ephrinB2 mRNA was upregulated in response to both PTH and PTHrP. This was confirmed by quantitative real-time PCR in vitro and in vivo. Increased ephrinB2 protein was also shown in vitro by Western blotting, and immunostaining of femur sections showed ephrinB2 in both osteoclasts and osteoblasts. Production of ephrinB2, as well as other ephrins or Eph family members, did not change during differentiation of Kusa 4b10 cells. Blockade of ephrinB2/EphB4 interaction resulted in inhibition of mineralization of Kusa 4b10 cells. Together with the shown effect of ephrinB2 promoting osteoblast differentiation and bone formation through action on EphB4, the data raise the possibility that PTH or PTHrP might regulate ephrinB2 to act in a paracrine or autocrine manner on EphB4 or EphB2 in the osteoblast, contributing as a local event to the anabolic action of PTH or PTHrP.
Summary Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.