Random transposon insertion libraries have proven invaluable in studying bacterial genomes. Libraries that approach saturation must be large, with multiple insertions per gene, making comprehensive genome-wide scanning difficult. To facilitate genome-scale study of the opportunistic human pathogen Pseudomonas aeruginosa strain PA14, we constructed a nonredundant library of PA14 transposon mutants (the PA14NR Set) in which nonessential PA14 genes are represented by a single transposon insertion chosen from a comprehensive library of insertion mutants. The parental library of PA14 transposon insertion mutants was generated by using MAR2xT7 , a transposon compatible with transposon-site hybridization and based on mariner . The transposon-site hybridization genetic footprinting feature broadens the utility of the library by allowing pooled MAR2xT7 mutants to be individually tracked under different experimental conditions. A public, internet-accessible database (the PA14 Transposon Insertion Mutant Database, http://ausubellab.mgh.harvard.edu/cgi-bin/pa14/home.cgi ) was developed to facilitate construction, distribution, and use of the PA14NR Set. The usefulness of the PA14NR Set in genome-wide scanning for phenotypic mutants was validated in a screen for attachment to abiotic surfaces. Comparison of the genes disrupted in the PA14 transposon insertion library with an independently constructed insertion library in P. aeruginosa strain PAO1 provides an estimate of the number of P. aeruginosa essential genes.
ABSTRACT:With the aim of identifying new pathways and genes regulated by PTH(1-34) and PTH-related protein 1-141 ] in osteoblasts, this study was carried out using a mouse marrow stromal cell line, Kusa 4b10, that acquires features of the osteoblastic phenotype in long-term culture conditions. After the appearance of functional PTH receptor 1 (PTHR1) in Kusa 4b10 cells, they were treated with either PTH(1-34) or PTHrP(1-141), and RNA was subjected to Affymetrix whole mouse genome array. The microarray data were validated using quantitative real-time RT-PCR on independently prepared RNA samples from differentiated Kusa 4b10, UMR106 osteosarcoma cells, and primary mouse calvarial osteoblasts, as well as in vivo using RNA from metaphyseal bone after a single PTH injection to 3-wk-old and 6-mo-old ovariectomized rats. Of the 45,101 probes used on the microarray, 4675 were differentially expressed by Ն1.5 fold, with a false discovery rate <0.1. Among the regulated genes, ephrinB2 mRNA was upregulated in response to both PTH and PTHrP. This was confirmed by quantitative real-time PCR in vitro and in vivo. Increased ephrinB2 protein was also shown in vitro by Western blotting, and immunostaining of femur sections showed ephrinB2 in both osteoclasts and osteoblasts. Production of ephrinB2, as well as other ephrins or Eph family members, did not change during differentiation of Kusa 4b10 cells. Blockade of ephrinB2/EphB4 interaction resulted in inhibition of mineralization of Kusa 4b10 cells. Together with the shown effect of ephrinB2 promoting osteoblast differentiation and bone formation through action on EphB4, the data raise the possibility that PTH or PTHrP might regulate ephrinB2 to act in a paracrine or autocrine manner on EphB4 or EphB2 in the osteoblast, contributing as a local event to the anabolic action of PTH or PTHrP.
Aims/hypotheses Ceramides and other sphingolipids comprise a family of lipid molecules that accumulate in skeletal muscle and promote insulin resistance. Chronic endurance exercise training decreases muscle ceramides and other sphingolipids, but less is known about the effects of a single bout of exercise. Methods We measured basal relationships and the effect of acute exercise (1.5 h at 50% V ⋅ O 2max ) and recovery on muscle sphingolipid content in obese volunteers, endurance trained athletes and individuals with type 2 diabetes. Results Muscle C18:0 ceramide (p = 0.029), dihydroceramide (p = 0.06) and glucosylceramide (p = 0.03) species were inversely related to insulin sensitivity without differences in total ceramide, dihydroceramide, and glucosylceramide concentration. Muscle C18:0 dihydroceramide correlated with markers of muscle inflammation (p = 0.04). Transcription of genes encoding sphingolipid synthesis enzymes was higher in athletes, suggesting an increased capacity for sphingolipid synthesis. The total concentration of muscle ceramides and sphingolipids increased during exercise and then decreased after recovery, during which time ceramide levels reduced to significantly below basal levels.Conclusions/interpretation These data suggest ceramide and other sphingolipids containing stearate (18:0) are uniquely related to insulin resistance in skeletal muscle. Recovery from an exercise bout decreased muscle ceramide concentration; this may represent a mechanism promoting the insulinsensitising effects of acute exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.