(±)-cis-4,4'-Dimethylaminorex (4,4'-DMAR) is a new psychoactive substance (NPS) that has been associated with 31 fatalities and other adverse events in Europe between June 2013 and February 2014. We used in vitro uptake inhibition and transporter release assays to determine the effects of 4,4'-DMAR on human high-affinity transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). In addition, we assessed its binding affinities to monoamine receptors and transporters. Furthermore, we investigated the interaction of 4,4'-DMAR with the vesicular monoamine transporter 2 (VMAT2) in rat phaeochromocytoma (PC12) cells and synaptic vesicles prepared from human striatum. 4,4'-DMAR inhibited uptake mediated by human DAT, NET or SERT, respectively in the low micromolar range (IC values < 2 μM). Release assays identified 4,4'-DMAR as a substrate type releaser, capable of inducing transporter-mediated reverse transport via DAT, NET and SERT. Furthermore, 4,4'-DMAR inhibited both the rat and human isoforms of VMAT2 at a potency similar to 3,4-methylenedioxymethylamphetamine (MDMA). This study identified 4,4'-DMAR as a potent non-selective monoamine releasing agent. In contrast to the known effects of aminorex and 4-methylaminorex, 4,4'-DMAR exerts profound effects on human SERT. The latter finding is consistent with the idea that fatalities associated with its abuse may be linked to monoaminergic toxicity including serotonin syndrome. The activity at VMAT2 suggests that chronic abuse of 4,4'-DMAR may result in long-term neurotoxicity.
Organic cation transporters (OCTs) facilitate the translocation of catecholamines, drugs and xenobiotics across the plasma membrane in various tissues throughout the human body. OCT3 plays a key role in low-affinity, high-capacity uptake of monoamines in most tissues including heart, brain and liver. Its deregulation plays a role in diseases. Despite its importance, the structural basis of OCT3 function and its inhibition has remained enigmatic. Here we describe the cryo-EM structure of human OCT3 at 3.2 Å resolution. Structures of OCT3 bound to two inhibitors, corticosterone and decynium-22, define the ligand binding pocket and reveal common features of major facilitator transporter inhibitors. In addition, we relate the functional characteristics of an extensive collection of previously uncharacterized human genetic variants to structural features, thereby providing a basis for understanding the impact of OCT3 polymorphisms.
Real-time inference of human motor volition has great potential for the intuitive control of robotic devices. Toward this end, myoelectric pattern recognition (MPR) has shown promise in the control of prosthetic limbs. Interfering noise and susceptibility to motion artifacts have hindered the use of MPR outside controlled environments, and thus represent an obstacle for clinical use. Advanced signal processing techniques have been previously proposed to improve the robustness of MPR systems. However, the investigation of such techniques have been limited to offline implementations with long time windows, which makes real-time use unattainable. In this work, we present a novel algorithm using discrete and stationary wavelet transforms for MPR that can be executed in real-time. Our wavelet-based de-noising algorithm outperformed conventional band-pass filtering (up to 100 Hz) and improved real-time MPR in the presence of motion artifacts, as measured by the motion test. Improved signal-to-noise ratio was found not to be crucial in offline MPR, as machine learning algorithms can integrate high but consistent noise as part of the signal. However, varying interference is expected to occur in real life where signal processing algorithms, as the one introduced in this paper, would potentially have a positive impact. Furthermore implementation of these algorithms in a prosthetic embedded system is required to validate their feasibility and usability during activities of the daily living.
Traditional Chinese Medicine (TCM) consists of a plethora of therapeutic approaches aiming to both characterize and treat diseases. Its utilization has gained significant popularity in the western world and is even backed by the World Health Organization's decision to include TCM diagnostic patterns into the new revision of the International Classification of Diseases code, the global standard for diagnostic health information. As these developments and potentially far-reaching decisions can affect modern healthcare systems and daily clinical work as well as wildlife conservation, its underlying factual basis must be critically examined. This article therefore provides an overview of the evidence underlying the basic TCM concepts, such as Qi, meridians, acupuncture, pulse and tongue diagnostics as well as traditional herbal treatments. Moreover, it discusses whether scientific literature on TCM reflects the current standard for evidence-based research, as described in good scientific practice and good clinical practice guidelines. Importantly, misinformation regarding the therapeutic efficacy of animal-derived substances has lead and currently leads to problems with wildlife preservation and animal ethics. Nevertheless, the (re-)discovery of artemisinin more than 50 years ago introduced a novel development in TCM: the commingling of Eastern and Western medicine, the appreciation of both systems. The need for more rigorous approaches, fulfilment of and agreement to current guidelines to achieve highquality research are of utmost relevance. Thereby, ancient knowledge of herbal species and concoctions may serve as a possible treasure box rather than Pandora's box.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.