Background: In the wake of the SARS-CoV-2 pandemic and unprecedented global demand, clinicians are struggling to source adequate access to personal protective equipment. Respirators can be in short supply, though are necessary to protect workers from SARS-CoV-2 exposure. Rapid decontamination and reuse of respirators may provide relief for the strained procurement situation. Method: In this study, we investigated the suitability of 70 C dry heat and microwavegenerated steam (MGS) for reprocessing of FFP2/N95-type respirators, and Type-II surgical face masks. Staphylococcus aureus was used as a surrogate as it is less susceptible than enveloped viruses to chemical and physical processes. Results: We observed >4 log 10 reductions in the viability of dry S. aureus treated by dry heat for 90 min at 70 C and >6 log 10 reductions by MGS for 90 s. After 3 reprocessing cycles, neither process was found to negatively impact the bacterial or NaCl filtration efficiency of the respirators that were tested. However, MGS was incompatible with Type-II surgical masks tested, as we confirmed that bacterial filtration capacity was completely lost following reprocessing. MGS was observed to be incompatible with some respirator types due to arcing observed around some types of metal nose clips and by loss of adhesion of clips to the mask. Conclusion: Considering the advantages and disadvantages of each approach, we propose a reprocessing personal protective equipment/face mask workflow for use in medical areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.