Mapping land cover with high accuracy has become a reality with the application of current remote sensing techniques. Due to the specific spectral response of the vegetation, soil and vegetation indices are adequate tools to help in the discrimination of land uses. Additionally, the accuracy of satellite imagery classification can be improved using multitemporal series combined with LiDAR data. This datafusion takes advantage of the information provided by LiDAR for the vegetation cover density, and the capability of multispectral data to detect the type of vegetation. The main goal of this study is to analyze the accuracy enhancement in land cover classification of two forested watersheds when using datafusion of annual time series of Sentinel-2 images complemented with low density LiDAR. The obtained results show that overall accuracy is better if LiDAR data is included in the classification. This improvement can be a significant issue in land cover classification of forest watershed due to relationship and influence that vegetation cover has on runoff estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.