Limitless cell proliferation, evasion from apoptosis, dedifferentiation, metastatic spread and therapy resistance: all these properties of a cancer cell contribute to its malignant phenotype and affect patient outcome. MYBL2 (alias B-Myb) is a transcription factor of the MYB transcription factor family and a physiological regulator of cell cycle progression, cell survival and cell differentiation. When deregulated in cancer cells, MYBL2 mediates the deregulation of these properties. In fact, MYBL2 is overexpressed and associated with poor patient outcome in numerous cancer entities. MYBL2 and players of its downstream transcriptional network can be used as prognostic and/or predictive biomarkers as well as potential therapeutic targets to offer less toxic and more specific anti-cancer therapies in future. In this review, we summarize current knowledge on the physiological roles of MYBL2 and highlight the impact of its deregulation on cancer initiation and progression.
Protein synthesis activity is abnormally enhanced in cancer cells to support their uncontrolled growth. However, this process needs to be tightly restricted under metabolic stress-a condition often found within the tumor microenvironment-to preserve cell viability. mTORC1 is critical to link protein synthesis activity to nutrient and oxygen levels, in part by controlling the 4E-BP1-eIF4E axis. Whereas mTORC1 and eIF4E are known pro-tumorigenic factors, whose expression or activity is increased in numerous cancers, the role of 4E-BP1 in cancer is not yet definitive. On the one hand, 4E-BP1 has tumor suppressor activity by inhibiting eIF4E and, thus, blocking mRNA translation and proliferation. This is corroborated by elevated levels of phosphorylated and hence inactive 4E-BP1, which are detected in various cancers. On the other hand, 4E-BP1 has pro-tumorigenic functions as it promotes tumor adaptation to metabolic and genotoxic stress by selectively enhancing or preventing the translation of specific transcripts. Here we describe the molecular and cellular functions of 4E-BP1 and highlight the distinct roles of 4E-BP1 in cancer depending on the microenvironmental context of the tumor.
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult‐to‐treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Pediatric malignancies including Ewing sarcoma (EwS) feature a paucity of somatic alterations except for pathognomonic driver-mutations that cannot explain overt variations in clinical outcome. Here, we demonstrate in EwS how cooperation of dominant oncogenes and regulatory germline variants determine tumor growth, patient survival and drug response. Binding of the oncogenic EWSR1-FLI1 fusion transcription factor to a polymorphic enhancer-like DNA element controls expression of the transcription factor MYBL2 mediating these phenotypes. Whole-genome and RNA sequencing reveals that variability at this locus is inherited via the germline and is associated with variable inter-tumoral MYBL2 expression. High MYBL2 levels sensitize EwS cells for inhibition of its upstream activating kinase CDK2 in vitro and in vivo, suggesting MYBL2 as a putative biomarker for anti-CDK2-therapy. Collectively, we establish cooperation of somatic mutations and regulatory germline variants as a major determinant of tumor progression and highlight the importance of integrating the regulatory genome in precision medicine.
Ewing sarcoma is an undifferentiated small-round-cell sarcoma. Although molecular detection of pathognomonic EWSR1-ETS fusions such as EWSR1-FLI1 enables definitive diagnosis, substantial confusion can arise if molecular diagnostics are unavailable. Diagnosis based on the conventional immunohistochemical marker CD99 is unreliable due to its abundant expression in morphological mimics.To identify novel diagnostic immunohistochemical markers for Ewing sarcoma, we performed comparative expression analyses in 768 tumors representing 21 entities including Ewing-like sarcomas, which confirmed that CIC-DUX4-, BCOR-CCNB3-, EWSR1-NFATc2-, and EWSR1-ETS-translocated sarcomas are distinct entities, and revealed that ATP1A1, BCL11B, and GLG1 constitute specific markers for Ewing sarcoma. Their high expression was validated by immunohistochemistry and proved to depend on EWSR1-FLI1-binding to highly active proximal super-enhancers. Automated cut-off-finding and combination-testing in a tissue-microarray comprising 174 samples demonstrated that detection of high BCL11B and/or GLG1 expression is sufficient to reach 96% specificity for Ewing sarcoma. While 88% of tested Ewing-like sarcomas displayed strong CD99-immunoreactivity, none displayed combined strong BCL11B- and GLG1-immunoreactivity.Collectively, we show that ATP1A1, BCL11B, and GLG1 are EWSR1-FLI1 targets, of which BCL11B and GLG1 offer a fast, simple, and cost-efficient way to diagnose Ewing sarcoma by immunohistochemistry. These markers may significantly reduce the number of misdiagnosed patients, and thus improve patient care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.