While the number of coronavirus cases from 2019 continues to grow, hospitals are reporting shortages of personal protective equipment (PPE) for frontline healthcare workers. Furthermore, PPE for the eyes and mouth, such as face shields, allow for additional protection when working with aerosols. 3-D printing enables the easy and rapid production of lightweight plastic frameworks based on open-source data. The practicality and clinical suitability of four face shields printed using a fused deposition modeling printer were examined. The weight, printing time, and required tools for assembly were evaluated. To assess the clinical suitability, each face shield was worn for one hour by 10 clinicians and rated using a visual analogue scale. The filament weight (21-42 g) and printing time (1:40-3:17 h) differed significantly between the four frames. Likewise, the fit, wearing comfort, space for additional PPE, and protection varied between the designs. For clinical suitability, a chosen design should allow sufficient space for goggles and N95 respirators as well as maximum coverage of the facial area. Consequently, two datasets are recommended. For the final selection of the ideal dataset to be used for printing, scalability and economic efficiency need to be carefully balanced with an acceptable degree of protection.
Computer-aided design and computer-aided manufacturing (CAD–CAM) enable subtractive or additive fabrication of temporary fixed dental prostheses (FDPs). The present in-vitro study aimed to compare the fracture resistance of both milled and additive manufactured three-unit FDPs and bar-shaped, ISO-conform specimens. Polymethylmethacrylate was used for subtractive manufacturing and a light-curing resin for additive manufacturing. Three (bars) and four (FDPs) different printing orientations were evaluated. All bars (n = 32) were subjected to a three-point bending test after 24 h of water storage. Half of the 80 FDPs were dynamically loaded (250,000 cycles, 98 N) with simultaneous hydrothermal cycling. Non-aged (n = 40) and surviving FDPs (n = 11) were subjected to static loading until fracture. Regarding the bar-shaped specimens, the milled group showed the highest flexural strength (114 ± 10 MPa, p = 0.001), followed by the vertically printed group (97 ± 10 MPa, p < 0.007). Subtractive manufactured FDPs revealed the highest fracture strength (1060 ± 89 N) with all specimens surviving dynamic loading. During artificial aging, 29 of 32 printed specimens failed. The present findings indicate that both printing orientation and aging affect the strength of additive manufactured specimens. The used resin and settings cannot be recommended for additive manufacturing of long-term temporary three-unit FDPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.