The group 6 metal mono-, bis- and tris-ferrocenylphosphine complexes [M(CO)5(PH2Fc)] (1a, M = Cr; 1b, M = Mo; 1c, M = W), cis-[M(CO)4(PH2Fc)2] (2a, M = Cr; 2b, M = Mo; 2c, M = W) and fac-[M(CO)3(PH2Fc)3] (3a, M = Cr; 3b, M = Mo; 3c, M = W) [Fc = Fe(η(5)-C5H4)(η(5)-C5H5)] were prepared and fully characterised. IR and NMR spectroscopy and single-crystal X-ray diffraction analysis indicate that FcPH2 is as good a σ donor as PhPH2 but is easier to handle and furthermore has a redox-active ferrocenyl group. Complex 1c was employed in the hydrophosphination of acrylonitrile and methyl acrylate in the presence of catalytic amounts of KOtBu giving the secondary phosphine complexes [W(CO)5{PH(Fc)(CH2CH2CN)}] (4a) and [W(CO)5{PH(Fc)(CH2CH2C(O)OMe)}] (4b). In addition, FcP(CH2CH2CN)2 (5) was prepared by a similar method from FcPH2 and acrylonitrile. These hydrophosphination products represent a convenient method for the modification of phosphines.
The coordinatively unsaturated tri-p-tolylgermyl complex RuCl(Ge[p-tolyl]3)(CO)(PPh3)2 (1) is obtained in good yield through the reaction between HGe(p-tolyl)3 and RuCl(Ph)(CO)(PPh3)2. On treatment of 1 with 1 equiv of NaS2CNR′2 (R′ = Et, Me), the chloride ligand is displaced and the corresponding coordinatively saturated complexes Ru(κ2-S2CNR′2)(Ge[p-tolyl]3)(CO)(PPh3)2 (2a, R′ = Et; 2b, R′ = Me) are formed. One of the PPh3 ligands in 2a is labile and undergoes substitution readily on addition of CO to give the cis-dicarbonyl complex Ru(κ2-S2CNEt2)(Ge[p-tolyl]3)(CO)2(PPh3) (3). On addition of NaS2CNMe2 to 2b, a PPh3 ligand is displaced by one sulfur atom while the other sulfur atom displaces one of the p-tolyl groups on germanium to give Ru(κ2(Ge,S)-Ge[p-tolyl]2S2CNMe2)(κ2-S2CNMe2)(CO)(PPh3) (4). Complex 4 is also formed on addition of excess NaS2CNMe2 to 1. Treatment of 1 with pyridine and ethanol under ambient conditions also results in cleavage of one of the germyl p-tolyl groups, and the product formed is the coordinatively unsaturated, ethoxy-substituted germyl complex RuCl(Ge[OEt][p-tolyl]2)(CO)(PPh3)2 (5). The ethoxy group in 5 is labile, and on contact with n-propanol in solution, alkoxy group exchange slowly occurs to give RuCl(Ge[O n Pr][p-tolyl]2)(CO)(PPh3)2 (6). This reaction is reversible, and treatment of 6 with ethanol returns 5. In a related reaction, treatment of 5 with water gives the hydroxy–germyl analogue RuCl(Ge[OH][p-tolyl]2)(CO)(PPh3)2 (7). The single-crystal X-ray structures of 1, 2a, 3, and 4 are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.