A two-step synthesis sequence furnishes quadruply annulated borepins in high yields. The first step involves a nucleophilic substitution reaction between aryl-BFK salts (aryl = mesityl, phenyl) and lithiated bromonapthalene derivatives LiNaph (HNaph = 8-bromonaphthalene (a), 5-bromoacenaphthene (b), 5-bromoacenaphthylene (c)). In the second step, the resulting heteroleptic triarylboranes aryl-B(Naph) (3a-c) are subjected to an intramolecular Ni-mediated Yamamoto reaction to close the seven-membered rings and create the borepins 4a-c. Only in the case of 3b is the Yamamoto reaction accompanied by a C-H activation reaction furnishing the 7-hydro-7-borabenzo[de]anthracene derivative 5. The product ratio 4b/5 can be influenced by control of the local Ni(0) concentration. The borepins 4a-c are benchtop stable and highly soluble even in hexane. Compounds 4a-c undergo reversible one-electron reduction; 4c is also able to accept a second electron in a reversible manner and already at moderate potential values (E = -1.49 V and -1.84 V (vs FcH/FcH)). 4a, 4b, and 5 show photoluminescence in the blue-green region of the spectrum, while 4c is nonfluorescent, which is likely attributable to an intramolecular charge-transfer transition.
Chiral organoboron compounds with a chelate backbone and mesityl/heterocycle substituents (thienyl, furyl, and derivatives thereof) undergo a quantitative phototransformation that yields rare, chiral N,B,X-containing heterocycles, such as base-stabilized 1,2-thiaborinines and 1,2-oxaborinines. Boriranes were observed as intermediates in some of these transformations. The oxaborinines display further reactivity, generating 4a,12b-dihydrobenzo[h][1,2]oxaborinino[4,3-f]quinolines through a sequential conrotatory electrocyclization and a [1,5]-H shift. The N,B,X-containing heterocycles display strong blue-green to orange-red emission in the solid state. Combined DFT//CASP2T calculations suggest that a common biradical intermediate is responsible for the formation of these compounds as well as their interconversion.
The photoreactivity of 9-borafluorene-based, C,C-chelated organoborates was investigated. Unlike the related tetraarylborates, the charge-transfer transitions imparted by the biphenyl chelate lead to selective insertion of one aryl substituent into the endocyclic B-C bond of the 9-borafluorene moiety, resulting in the formation of boratanorcaradienes. This photoreaction likely proceeds according to a Zimmerman rearrangement, which is analogous to one of the initially proposed mechanisms for tetraarylborates and provides additional insight into these long-debated photochemical reactions.
Depending on the solvent, a brominated arylborane gave the multiple helicene B2-TBPA (pyridine) or the oxadiborepin ODBE (THF) after intramolecular Yamamoto coupling.
Four new BMes2-functionalized indolizine derivatives (Mes = mesityl) have been prepared via the cycloaddition reaction between pyrido[2,1-a]isoindole (A) or pyrrolo[1,2-a]pyridine (B) and BMes2-containing alkynes. All four compounds are brightly blue or blue-green fluorescent with λ(em) = 428-495 nm and Φ = 0.27-0.68, depending on the substitution position of the BMes2 group. Experimental and TD-DFT computational data indicated that the primary electronic transitions responsible for the fluorescence of 1-4 are from HOMO to LUMO (π → π*) rather than charge transfer from N → B, which is in agreement with previous findings suggesting that the lone-pair on N is delocalized throughout the N-heterocycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.