Objectives To assess the reproducibility of radiomics features extracted from the developing lung in repeated in-vivo fetal MRI acquisitions. Methods In-vivo MRI (1.5 Tesla) scans of 30 fetuses, each including two axial and one coronal T2-weighted sequences of the whole lung with all other acquisition parameters kept constant, were retrospectively identified. Manual segmentation of the lungs was performed using ITK-Snap. One hundred radiomics features were extracted from fetal lung MRI data using Pyradiomics, resulting in 90 datasets. Intra-class correlation coefficients (ICC) of radiomics features were calculated between baseline and repeat axial acquisitions and between baseline axial and coronal acquisitions. Results MRI data of 30 fetuses (12 [40%] females, 18 [60%] males) at a median gestational age of 24 + 5 gestational weeks plus days (GW) (interquartile range [IQR] 3 + 3 GW, range 21 + 1 to 32 + 6 GW) were included. Median ICC of radiomics features between baseline and repeat axial MR acquisitions was 0.92 (IQR 0.13, range 0.33 to 1), with 60 features exhibiting excellent (ICC > 0.9), 27 good (> 0.75–0.9), twelve moderate (0.5–0.75), and one poor (ICC < 0.5) reproducibility. Median ICC of radiomics features between baseline axial and coronal MR acquisitions was 0.79 (IQR 0.15, range 0.2 to 1), with 20 features exhibiting excellent, 47 good, 29 moderate, and four poor reproducibility. Conclusion Standardized in-vivo fetal MRI allows reproducible extraction of lung radiomics features. In the future, radiomics analysis may improve diagnostic and prognostic yield of fetal MRI in normal and pathologic lung development. Key Points • Non-invasive fetal MRI acquired using a standardized protocol allows reproducible extraction of radiomics features from the developing lung for objective tissue characterization. • Alteration of imaging plane between fetal MRI acquisitions has a negative impact on lung radiomics feature reproducibility. • Fetal MRI radiomics features reflecting the microstructure and shape of the fetal lung could complement observed-to-expected lung volume in the prediction of postnatal outcome and optimal treatment of fetuses with abnormal lung development in the future.
Purpose To investigate the reproducibility of radiomics features extracted from two-dimensional regions of interest (2D ROIs) versus whole lung (3D) ROIs in repeated in-vivo fetal magnetic resonance imaging (MRI) acquisitions. Methods Thirty fetal MRI scans including two axial T2-weighted acquisitions of the lungs were analysed. 2D (lung at the level of the carina) and 3D (whole lung) ROIs were manually segmented using ITK-Snap. Ninety-five radiomics features were extracted from 2 and 3D ROIs in initial and repeat acquisitions using Pyradiomics. Radiomics feature intra-class correlation coefficients (ICC) were calculated between 2 and 3D ROIs in the initial acquisition, and between 2 and 3D ROIs in repeated acquisitions, respectively. Results MRI data of 11 (36.7%) female and 19 (63.3%) male fetuses acquired at a median 25 + 0 gestational weeks plus days (GW) (interquartile range [IQR] 23 + 4 − 27 + 0 GW) were assessed. Median radiomics feature ICC between 2 and 3D ROIs in the initial MRI acquisition was 0.733 (IQR 0.313–0.814, range 0.018–0.970). ICCs between radiomics features extracted using 3D ROIs in initial and repeat acquisitions (median 0.908 [IQR 0.824–0.929, range 0.335–0.996]) were significantly higher compared to 2D ROIs (0.771 [0.699–0.835, 0.048–0.965]) (p < 0.001). Conclusion Fetal MRI radiomics features extracted from 3D whole lung segmentation masks showed significantly higher reproducibility across repeat acquisitions compared to 2D ROIs. Therefore, fetal MRI whole lung radiomics features are robust diagnostic and potentially prognostic tools in the image-based in-vivo quantitative assessment of lung development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.