A PCR strategy is described for global amplification of DNA from a single eukaryotic cell that enables the comprehensive analysis of the whole genome. By comparative genomic hybridization, not only gross DNA copy number variations, such as monosomic X and trisomic 21 in single male cells and cells from Down's syndrome patients, respectively, but multiple deletions and amplifications characteristic for human tumor cells are reliably retrieved. As a model of heterogeneous cell populations exposed to selective pressure, we have studied single micrometastatic cells isolated from bone marrow of cancer patients. The observed congruent pattern of comparative genomic hybridization data, loss of heterozygosity, and mutations as detected by sequencing attests to the technique's fidelity and demonstrates its usefulness for assessing clonal evolution of genetic variants in complex populations.
Chromosomal instability in human breast cancer is known to take place before mammary neoplasias display morphological signs of invasion. We describe here the unexpected finding of a tumor cell population with normal karyotypes isolated from bone marrow of breast cancer patients. By analyzing the same single cells for chromosomal aberrations, subchromosomal allelic losses, and gene amplifications, we confirmed their malignant origin and delineated the sequence of genomic events during breast cancer progression. On this trajectory of genomic progression, we identified a subpopulation of patients with very early HER2 amplification. Because early changes have the highest probability of being shared by genetically unstable tumor cells, the genetic characterization of disseminated tumor cells provides a novel rationale for selecting patients for targeted therapies.
This study shows, for the first time to our knowledge, that germline CEBPA mutations are frequently observed among AML patients with CEBPA mutations. Including the families with germline CEBPA mutations reported previously, additional somatic CEBPA mutations represent a frequent second event in AML with germline CEBPA mutations. Our data strongly indicate that germline CEBPA mutations predispose to AML and that additional somatic CEBPA mutations contribute to the development of the disease.
Global genome amplification from formalin-fixed tissues is still problematic when performed with low cell numbers. Here, we tested a recently developed method for whole genome amplification termed "SCOMP" (single cell comparative genomic hybridization) on archival tissues of different ages. We show that the method is very well suited for formalin-fixed paraffin-embedded samples obtained by nuclei extraction or laser microdissection. The polymerase chain reaction (PCR) products can be used for subsequent comparative genomic hybridization, loss of heterozygosity studies, and DNA sequencing. To control for PCR-induced artifacts we amplified genomic DNA isolated from 20 nuclei of archival formalin-fixed, paraffin-embedded nonpathological lymph nodes. Subsequent comparative genomic hybridization revealed the expected balanced profiles. For loss of heterozygosity analysis by microsatellite PCR 60 to 160 cells were sufficient. In comparative experiments the approach turned out to be superior to published degenerated oligonucleotide-primed-PCR protocols. The method provides a robust and valuable tool to study very small cell samples, such as the genomes of dysplastic cells or the clonal evolution within heterogeneous tumors.
The pericentric inversion of chromosome 16, inv(16)(p13q22), is associated with acute myeloid leukemia (AML) subtype M4Eo that is characterized by the presence of myelomonocytic blasts and atypical eosinophils. This rearrangement fuses the CBFB and MYH11 genes, with the latter encoding the smooth muscle myosin heavy chain (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.