In this paper, we present an approach for haptic object recognition and its evaluation on multi-fingered robot hands. The recognition approach is based on extracting key features of tactile and kinesthetic data from multiple palpations using a clustering algorithm. A multi-sensory object representation is built by fusion of tactile and kinesthetic features.We evaluated our approach on three robot hands and compared the recognition performance using object sets consisting of daily household objects. Experimental results using the five-fingered hand of the humanoid robot ARMAR, the three-fingered Schunk Dexterous Hand 2 and a parallel Gripper are performed. The results show that the proposed approach generalizes to different robot hands.
In this paper, we address the question of generative knowledge construction from sensorimotor experience, which is acquired by exploration. We show how actions and their effects on objects, together with perceptual representations of the objects, are used to build generative models which then can be used in internal simulation to predict the outcome of actions. Specifically, the paper presents an experiential cycle for learning association between object properties (softness and height) and action parameters for the wiping task and building generative models from sensorimotor experience resulting from wiping experiments. Object and action are linked to the observed effect to generate training data for learning a nonparametric continuous model using Support Vector Regression. In subsequent iterations, this model is grounded and used to make predictions on the expected effects for novel objects which can be used to constrain the parameter exploration. The cycle and skills have been implemented on the humanoid platform ARMAR-IIIb. Experiments with set of wiping objects differing in softness and height demonstrate efficient learning and adaptation behavior of action of wiping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.