Understanding traffic situations in dynamic traffic environments is an essential requirement for autonomous driving. The prediction of the current traffic scene into the future is one of the main problems in this context. In this publication we focus on highway scenarios, where the maneuver space for traffic participants is limited to a small number of possible behavior classes. Even though there are many publications in the field of maneuver prediction, most of them set the focus on the classification problem, whether a certain maneuver is executed or not. We extend approaches which solve the classification problem of lane-change behavior by introducing the novel aspect of estimating a continuous distribution of possible trajectories.Our novel approach uses the probabilities which are assigned by a Random Decision Forest to each of the maneuvers lane following, lane change left and lane change right. Using measured data of a vehicle and the knowledge of the typical lateral movement of vehicles over time taken from realworlddata, we derive a Gaussian Mixture Regression method. For the final result we combine the predicted probability density functions of the regression method and the computed maneuver probabilities using a Mixture of Experts approach.In a large scale experiment on real world data collected on multiple test drives we trained and validated our prediction model and show the gained high prediction accuracy of the proposed method.
By observing their environment as well as other traffic participants, humans are enabled to drive road vehicles safely. Vehicle passengers, however, perceive a notable difference between non-experienced and experienced drivers. In particular, they may get the impression that the latter ones anticipate what will happen in the next few moments and consider these foresights in their driving behavior. To make the driving style of automated vehicles comparable to the one of human drivers with respect to comfort and perceived safety, the aforementioned anticipation skills need to become a built-in feature of self-driving vehicles. This article provides a systematic comparison of methods and strategies to generate this intention for self-driving cars using machine learning techniques. To implement and test these algorithms we use a large data set collected over more than 30 000 km of highway driving and containing approximately 40 000 realworld driving situations. We further show that it is possible to classify driving maneuvers upcoming within the next 5 s with an Area Under the ROC Curve (AUC) above 0.92 for all defined maneuver classes. This enables us to predict the lateral position with a prediction horizon of 5 s with a median lateral error of less than 0.21 m.
To plan safe and comfortable trajectories for automated vehicles on highways, accurate predictions of traffic situations are needed. So far, a lot of research effort has been spent on detecting lane change maneuvers rather than on estimating the point in time a lane change actually happens. In practice, however, this temporal information might be even more useful. This paper deals with the development of a system that accurately predicts the time to the next lane change of surrounding vehicles on highways using long short-term memorybased recurrent neural networks. An extensive evaluation based on a large real-world data set shows that our approach is able to make reliable predictions, even in the most challenging situations, with a root mean squared error around 0.7 seconds. Already 3.5 seconds prior to lane changes the predictions become highly accurate, showing a median error of less than 0.25 seconds. In summary, this article forms a fundamental step towards downstreamed highly accurate position predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.