We develop a data-driven decision model to improve process quality in manufacturing. A challenge for traditional methods in quality management is to handle high-dimensional and nonlinear manufacturing data. We address this challenge by adapting explainable artificial intelligence to the context of quality management. Specifically, we propose the use of nonlinear modeling with Shapley additive explanations to infer how a set of production parameters and the process quality of a manufacturing system are related. Thereby, we contribute a measure of process importance based on which manufacturers can prioritize processes for quality improvement. Grounded in quality management theory, our decision model selects improvement actions that target the sources of quality variation. The decision model is validated in a real-world application at a leading manufacturer of high-power semiconductors. Seeking to improve production yield, we apply our decision model to select improvement actions for a transistor chip product. We then conduct a field experiment to confirm the effectiveness of the improvement actions. Compared with the average yield in our sample, the experiment returns a reduction in yield loss of 21.7%. Furthermore, we report on results from a postexperimental rollout of the decision model, which also resulted in significant yield improvements. We demonstrate the operational value of explainable artificial intelligence by showing that critical drivers of process quality can go undiscovered by the use of traditional methods. This paper was accepted by Charles Corbett, operations management.
This paper proposes a data-driven procedure to improve productivity in make-to-stock manufacturing. By leveraging recent developments in information systems research, the paper addresses manufacturing systems with high process complexity and variety. Specifically, the proposed procedure draws upon process mining to dynamically map and analyse manufacturing processes in an automated manner. This way, manufacturers can leverage data to overcome the limitations of existing process mapping methods, which only provide static snapshots of process flows. By bridging data and process science, process mining can exploit hitherto untapped potential for productivity improvement. The proposed procedure is empirically validated at a leading manufacturer of sanitary products. The field test leads to three concrete improvement suggestions for the company. This research contributes to the literature on production research by demonstrating a novel use of process mining in manufacturing and by guiding practitioners in its implementation.
Lean production is best taught on the factory floor. Yet, in higher education, it is almost exclusively taught in classrooms. We want to keep and proliferate the learning experience of exploring a real factory's "Gemba" and, at the same time, to remove limitations to factory visits. Due to recent developments in virtual reality (VR) technologies, VR offers excellent opportunities to achieve this. In this paper, we present an innovative way to teach lean production with VR. We show how we implemented a solution to let students be immersed in the factories of Toyota, ABB, and other world-renowned companies without having to travel. We also report on our experiences and provide other teachers the information needed to adopt "Gemba VR" in their own teaching.
To meet order fulfillment targets, manufacturers seek to optimize production schedules. Machine learning can support this objective by predicting throughput times on production lines given order specifications. However, this is challenging when manufacturers produce customized products because customization often leads to changes in the probability distribution of operational data—so‐called distributional shifts. Distributional shifts can harm the performance of predictive models when deployed to future customer orders with new specifications. The literature provides limited advice on how such distributional shifts can be addressed in operations management. Here, we propose a data‐driven approach based on adversarial learning, which allows us to account for distributional shifts in manufacturing settings with high degrees of product customization. We empirically validate our proposed approach using real‐world data from a job shop production that supplies large metal components to an oil platform construction yard. Across an extensive series of numerical experiments, we find that our adversarial learning approach outperforms common baselines. Overall, this paper shows how production managers can improve their decision making under distributional shifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.