Abstract:The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO-Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.
Many studies address the Interdecadal Pacific Oscillation (IPO) as a modulator of climate in several regions all over the globe. However, very few suggest that it has an impact on Sahel rainfall low-frequency variability. This work shows the relevance of such connection, supported by a robust response of state-of-the-art global climate models, involved in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Our results reveal that the positive phase of the IPO has a negative impact on Sahel rainfall anomalies regardless of the externally forced changes induced by anthropogenic gases. Such relationship is stronger for those models in which sea surface temperatures associated with the positive phase of the IPO show warmer anomalies over the tropical Pacific. Therefore, we suggest the importance of a skillful simulation of IPO to improve decadal prediction of Sahel rainfall and to better understand its variability.
The Amazonia and Northeast regions of northern Brazil are characterized by very different rainfall regimes but have certain similarities in terms of their variability. The precipitation variability in both regions is strongly linked to the tropical Atlantic sea surface temperature (SST) gradient and the tropical Pacific SST anomalies, which at decadal timescales are modulated by the Atlantic Multidecadal Variability (AMV) and the Interdecadal Pacific Oscillation (IPO) modes of SST, respectively. On the other hand, it has been found that state of the art models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) are able to reproduce some of the characteristics of the low-frequency SST variability modes. In this work we analyze how CMIP5 models simulate the observed response of precipitation in the Amazonia and Northeast regions to the AMV and the IPO and the atmospheric mechanisms involved. Results show that, in both CMIP5 simulations and observations, Amazonia and Northeast rainfall response to the AMV is the opposite, due to the modulation of the intertropical convergence zone (ITCZ) position. Conversely, the IPO affects equally both regions as a consequence of anomalous subsidence over the entire northern Brazil triggered by warm SST anomalies in the tropical Pacific. Such results suggest that an improvement of the predictability of decadal SST modes will directly revert into a better prediction of changes in the Amazonia and Northeast rainfall at longer timescales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.