Insect attachment devices and capabilities have been subject to research efforts for decades, and even though during that time considerable progress has been made, numerous questions remain. Different types of attachment devices are known, alongside most of their working principles, however, some details have yet to be understood. For instance, it is not clear why insects for the most part developed pairs of claws, instead of either three or a single one. In this paper, we investigated the gripping forces generated by the stick insect Sungaya inexpectata, in dependence on the number of available claws. The gripping force experiments were carried out on multiple, standardized substrates of known roughness, and conducted in directions both perpendicular and parallel to the substrate. This was repeated two times: first with a single claw being amputated from each of the animals’ legs, then with both claws removed, prior to the measurement. The adhesive pads (arolia) and frictional pads (euplantulae) remained intact. It was discovered that the removal of claws had a detractive effect on the gripping forces in both directions, and on all substrates. Notably, this also included the control of smooth surfaces on which the claws were unable to find any asperities to grip on. The results show that there is a direct connection between the adhesive performance of the distal adhesive pad (arolium) and the presence of intact claws. These observations show collective effects between different attachment devices that work in concert during locomotion, and grant insight into why most insects possess two claws.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.