The organisms inhabiting intertidal platforms can affect their weathering and erosion rates. Research on biotic influences on platform integrity has traditionally emphasized the role of bioeroders (i.e., organisms that scrap or bore into platforms via mechanical and chemical means). Yet, recent studies illustrate that covers of sessile organisms on the surfaces of intertidal platforms can have bioprotective effects by reducing the efficacy of physical weathering and erosion agents. Eroding cliffs fronted by cohesive shore platforms are a pervasive feature along the continental Argentinean coastline (37–52°S). In this study, we investigated how mussel (Brachidontes rodriguezii) cover mediates weathering and erosion of a cohesive, consolidated silt platform at Playa Copacabana (5 km north of Miramar, Buenos Aires Province; 38° 14′ S, 57° 46′ W). By means of mussel removal experiments, we found that mussel cover attenuates variations in platform surface temperatures, enhances moisture retention during low tide, reduces rates of salt crystallization within the pores of the platform material, and attenuates hydrodynamic forcing on the platform surface. Mussel removal also led to a 10% decrease in surface hardness and a 2-mm reduction in platform height after 5 months. Collectively, our findings indicate that mussel beds limit substrate breakdown via heating-cooling, wetting-drying, and salt crystallization and provide some of the first experimental field evidence for the direct impacts of biotic cover on platform erosion. As intertidal platforms protect the cliffs behind from the hydraulic impact of waves, which may be enhanced with future sea-level rise, we posit that the protection of platforms by mussels indirectly moderates coastline retreat, especially on soft cohesive shores.
Mussels form dense three-dimensional beds that serve as habitat to other species. In rocky shores, these beds are often interspersed by gaps due to patchy dislodgement/mortality caused by the action of waves, predators, and/or extreme temperatures. Although mussel patches and gaps are known to support distinctive invertebrate communities, variations in invertebrate habitat function between the interior and edges of mussel patches and gaps were not yet examined. Here, we evaluated variations in habitat properties and invertebrate composition between the edge and interior of mussel (Brachidontes rodriguezii) patches and gaps at three rocky shore sites in the Southwestern Atlantic. Our results indicate that the interior and edge of mussel patches differ in terms of mussel size and density (i.e., a surrogate of habitat structure) and the amount of sediments they accumulate. However, this does not directly translate into consistent differences on temperature, desiccation, and invertebrate composition across sites. As it concerns to gaps, we generally observed increased limpet (Siphonaria lesonii) densities at their edges, which suggests that they encounter favourable conditions by the perimeter of mussel patches. The lack of consistent edge effects on the invertebrates of mussel patches suggests that their species composition would remain largely unaffected by expected increases in gap and edge habitat formation due to ongoing increases in the frequency and magnitude of storms and heat waves. Yet, if increased availability of edge habitats leads to increased overall density of limpets in these rocky shores, then changes could be expected in algal production, composition, and dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.