A numerical mathematical model was developed to determine the behavior of thermal distribution in a convergentdivergent nozzle used in aerospace applications. This development was carried out by using the two-dimensional heat equation for describing the phenomenon, which was resolved by means of the finite difference method. In addition, it was considered insulated and flow boundary conditions, a structured mesh with, and a nodal density of 169. The methodology was implemented in MATLAB through an algorithm which allows variations in the geometry, nodal density, and inlet conditions. This methodology was validated using computational fluid dynamics (CFD). The validation demonstrated that the proposed methodology reduces the computational cost by having an execution time 1555 times less than CFD simulation time. The relative error between the methodology and the CFD results was 2,9 %. The proposed methodology would allow the preliminary design process of this type of nozzles by analyzing thermal distribution effectively and accurately.
An aero-structural algorithm to optimize a flying wing in cruise conditions for preliminary design is developed using two-way interaction between the structure and aerodynamics. A particle swarm routine is employed to solve the multi-objective optimization, aiming to reduce the weight of the structure and the aerodynamic drag at the design point. Different shapes are evaluated during the optimization process until the algorithm reaches the optimal wing aspect ratio, taper ratio, angle of incidence, twist angle, swept angle, and airfoil shape, where a six-parameters method is employed to allow reflex airfoils. A main isotropic I-beam models the wing structure. An extended vortex lattice model is employed to model the aerodynamics, along with a high-order panel method with fully coupled viscous interaction. The finite element method is used to solve the flying-wing structure under static loads. An algorithm is developed to iterate between the deflection of the wing and its impact on the aerodynamics until convergence is reached. Different constraints are implemented into the objective function to fulfil the structural criteria and the longitudinal static stability. A comparison against a baseline optimization is carried out, achieving higher efficiency and promising results in elliptical lift distribution, and a high static margin, without the use of non-constant twist. The results suggest that combining both reflex airfoils and sweep with washout is the optimal solution to reduce the drag and weight, keeping the longitudinal static stability criteria for tailless aircraft in the lower end of the transonic regime.
Cuando se desarrolla un nuevo producto aeroespacial, es esencial evaluar su rendimiento. Los drones se consideran un producto noble con un enorme potencial de impacto en la industria de la aviación en los próximos años. El diseño de un dron certificado es una actividad compleja en la que interactúan varias áreas del conocimiento. Normalmente se plantea en fases que abarcan desde la viabilidad hasta la producción. En este artículo se propone el uso de metodologías ágiles para el diseño conceptual de un dron. Diversos estudios han demostrado el potencial para abordar desafíos similares mediante el uso de métodos análogos a aquellos que fueron empleados en el desarrollo de software (como las metodologías ágiles). El Scrum fue el método ágil seleccionado para su adaptación al diseño del dron con el fin de gestionar mejor la complejidad del proceso de diseño (incluyendo las alteraciones de este). Finalmente, se presenta una propuesta para la aplicación de este método mostrando las diferentes etapas diseño y sus beneficios potenciales.
The main topic of the project is the study of different activities within various companies related with the flight operations engineering area, focused on the identification of different scenarios that a company can generate due to their type of operation. The goal with this job is to create a relationship between the aeronautic industry and the academic field. Since there is a need of trained personnel in the flight operation area in Colombia, who will have to accomplish all the requirements established by the civil aviation authorityKeywords--Curriculum, Navigation, operations, Performance, Management. Digital Object Identifier (DOI): http://dx. Abstract-The main topic of the project is the study of different activities within various companies related with the flight operations engineering area, focused on the identification of different scenarios that a company can generate due to their type of operation. The goal with this job is to create a relationship between the aeronautic industry and the academic field. Since there is a need of trained personnel in the flight operation area in Colombia, who will have to accomplish all the requirements established by the civil aviation authority
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.