The last 6 years have seen sustained investment in health data science in the United Kingdom and beyond, which should result in a data science community that is inclusive of all stakeholders, working together to use data to benefit society through the improvement of public health and well‐being. However, opportunities made possible through the innovative use of data are still not being fully realised, resulting in research inefficiencies and avoidable health harms. In this paper, we identify the most important barriers to achieving higher productivity in health data science. We then draw on previous research, domain expertise, and theory to outline how to go about overcoming these barriers, applying our core values of inclusivity and transparency. We believe a step change can be achieved through meaningful stakeholder involvement at every stage of research planning, design, and execution and team‐based data science, as well as harnessing novel and secure data technologies. Applying these values to health data science will safeguard a social licence for health data research and ensure transparent and secure data usage for public benefit.
ObjectivesMultimorbidity—the co-occurrence of at least two chronic diseases in an individual—is an important public health challenge in ageing societies. The vast majority of multimorbidity research takes a cross-sectional approach, but longitudinal approaches to understanding multimorbidity are an emerging research area, being encouraged by multiple funders. To support development in this research area, the aim of this study is to scope the methodological approaches and substantive findings of studies that have investigated longitudinal multimorbidity trajectories.DesignWe conducted a systematic search for relevant studies in four online databases (Medline, Scopus, Web of Science and Embase) in May 2020 using predefined search terms and inclusion and exclusion criteria. The search was complemented by searching reference lists of relevant papers. From the selected studies, we systematically extracted data on study methodology and findings and summarised them in a narrative synthesis.ResultsWe identified 35 studies investigating multimorbidity longitudinally, all published in the last decade, and predominantly in high-income countries from the Global North. Longitudinal approaches employed included constructing change variables, multilevel regression analysis (eg, growth curve modelling), longitudinal group-based methodologies (eg, latent class modelling), analysing disease transitions and visualisation techniques. Commonly identified risk factors for multimorbidity onset and progression were older age, higher socioeconomic and area-level deprivation, overweight and poorer health behaviours.ConclusionThe nascent research area employs a diverse range of longitudinal approaches that characterise accumulation and disease combinations and to a lesser extent disease sequencing and progression. Gaps include understanding the long-term, life course determinants of different multimorbidity trajectories, and doing so across diverse populations, including those from low-income and middle-income countries. This can provide a detailed picture of morbidity development, with important implications from a clinical and intervention perspective.
Background: Several new classes of glucose lowering medications have been introduced in the past two decades. Some, such as Sodium-glucose cotransporter 2 inhibitors (SGLT2s), have evidence of improved cardiovascular outcomes, while others, such as Dipeptidyl peptidase-4 inhibitors (DPP4s), do not. It is therefore important to identify their uptake, in order to find ways to support the use of more effective medications. Aims: We studied the uptake of these new classes amongst patients with type 2 diabetes. Design and setting: Retrospective repeated cross-sectional analysis. We compared rates of medication uptake in Australia, Canada, England and Scotland. Method: We used primary care Electronic Medical Data on prescriptions (Canada, UK) and dispensing data (Australia) from 2012 to 2017. We included persons aged 40 years or over on at least one glucose-lowering drug class in each year of interest, excluding those on insulin only. We determined proportions of patients in each nation, for each year, on each class of medication, and on combinations of classes. Results: By 2017, data from 238,609 patients were included. The proportion of patients on sulfonylureas (SUs) decreased in three out of four nations, while metformin decreased in Canada. Use of combinations of metformin and new drug classes increased in all nations, replacing combinations involving SUs. In 2017 more patients were on DPP4s (between 19.1% and 27.6%) than on SGLT2s (between 10.1% and 15.3%). Conclusions: New drugs are displacing SUs. However, despite evidence of better outcomes, the adoption of SGLT2s lagged behind DPP4s.
Future-generation healthcare systems will be highly distributed, combining centralised hospital systems with decentralised homework rk-and environment-based monitoring and diagnostics systems. These will reduce costs and injuryrelated risks whilst both improving quality of service, and reducing the response time for diagnostics and treatments made available to patients. To make this vision possible, medical data must be accessed and shared over a variety of mediums including untrusted networks. In this paper, we present the design and initial implementation of the SERUMS tool-chain for accessing, storing, communicating and analysing highly confidential medical data in a safe, secure and privacypreserving way. In addition, we describe a data fabrication framework for generating large volumes of synthetic but realistic data, that is used in the design and evaluation of the tool-chain. We demonstrate the present version of our technique on a use case derived from the Edinburgh Cancer Centre, NHS Lothian, where information about the effects of chemotherapy treatments on cancer patients is collected from different distributed databases, analysed and adapted to improve ongoing treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.