Breast cancer remains the most prevalent cause of cancer mortality in woman worldwide due to the metastatic process and therapy resistance. Resistance against cancer therapy is partially attributed to cancer stem cells (CSCs). These cells arise from epithelial cells undergoing epithelial-to-mesenchymal transition (EMT) and might be responsible for tumor recurrence. In this study, we reported the relevance of miR-155 upregulation in chemoresistant cells associated with EMT. Notably, we found miR-155 induction in exosomes isolated from CSCs and resistant cells, followed by resistant cells’ exosome transfer to the recipient sensitive cells. Functionally, miR-155 mimic assay showed an enrichment in miR-155 from exosome concomitant with miR-155 exosome transfer to breast cancer cells. In parallel to these effects, we also observed EMT change in miR-155 transfected cells. The chemoresistance phenotype transfer to sensitive cells and the migration capability was analyzed by MTT and scratch assays and our results suggest that exosomes may intermediate resistance and migration capacity to sensitive cells partly through exosome transfer of miR-155. Taken together, our findings establish the significance of exosome-mediate miR-155 chemoresistance in breast cancer cells, with implications for targeting miR-155 signaling as a possible therapeutic strategy.
Gastric cancer remains one of the leading causes of global cancer mortality due to therapy resistance, with Helicobacter pylori (H. pylori) infection being a major risk factor. In this study, we report the significance of an elevation of the stem cell regulator SOX9 in bacteria-infected human gastritis and cancer samples, paralleling increased levels of TNFα SOX9 elevation was more intense in specimens containing the pathogenically significant cagA+ strains of H. pylori Notably, we found that SOX9 was required for bacteria-induced gastric cancer cell proliferation, increased levels of β-catenin, and acquisition of stem cell-like properties. Analysis of three large clinical cohorts revealed elevated SOX9 levels in gastric cancer with advanced tumor stage and poor patient survival. Functionally, SOX9 silencing in gastric cancer cells enhanced apoptosis and senescence, concomitantly with a blockade to self-renewal and tumor-initiating capability. Paralleling these effects, we also found SOX9 to mediate cisplatin chemoresistance associated with reduced disease-free survival. Mechanistic interactions between SOX9 and β-catenin expression suggested the existence of a regulatory role for SOX9 targeting the WNT canonical pathway. Taken together, our findings establish the significance of SOX9 in gastric cancer pathobiology and heterogeneity, with implications for targeting WNT-SOX9 signaling as a rational therapeutic strategy. Cancer Res; 76(22); 6735-46. ©2016 AACR.
It is well known that the risk of development of gastric cancer (GC) in Helicobacter pylori -infected patients depends on several factors. Thus, the aim of this study was to investigate the effect of proinflammatory cytokine gene polymorphisms for IL-1β , IL-1RN and TNF-α on the development of GC in a Brazilian population. A total of 202 biopsies obtained from Brazilian patients with chronic gastritis and GC were included in the study. Infection with H. pylori cag A + was determined by the polymerase chain reaction (PCR) as previously described. IL-1β , IL-1RN and TNF-α polymorphism genotyping was performed by restriction fragment length polymorphism PCR. Associations between gene polymorphisms, clinical diseases and virulence markers were evaluated using either the X 2 test or the Fisher exact test. Our results demonstrated that the IL-1β -511 C/C and IL-1β -511 C/T alleles were associated with chronic gastritis in H. pylori -positive patients (P = 0.04 and P = 0.05, respectively) and the IL-1β -511 C/C genotype was associated with GC (P = 0.03). The frequency of IL-1RN alleles from patients with chronic gastritis and GC indicated that there was no difference between the genotypes of the groups studied. Similar results were found for TNF-α -308 gene polymorphisms. Our results indicate that the IL-1β -511 C/C and C/T gene polymorphisms are associated with chronic gastritis and GC development in H. pylori -infected individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.