BackgroundCigarette consumption has been identified as the main non‐etiological factor in head and neck cancer (HNC) development. One of the main compounds in cigarettes is nicotine, which binds directly to nicotine acetylcholine receptors (nAchRs) in the body, which are encoded by different genes of the CHRNA family. Polymorphisms in some of these genes have been studied in relation to the risk of HNC and cigarette consumption intensity. The aim of this study was to evaluate whether there were associations between the CHRNA3 (rs578776) and CHRNA5 (rs16969968) polymorphisms and HNC risk and between the polymorphisms and the intensity of cigarette consumption.MethodsA total of 1,067 individuals from Heliopolis Hospital in São Paulo were investigated, including 619 patients with HNC and 448 patients without diagnosed tumors. All participants answered a questionnaire about sociodemographic information and cigarette consumption data. The polymorphisms were determined by TaqMan genotyping by real‐time PCR.ResultsThe polymorphisms studied, rs578776 (CHRNA3) and rs16969968 (CHRNA5), did not have an association with HNC risk, but the rs16969968 homozygous genotype was associated with increased cigarette consumption intensity (OR 1.93, 95% CI 1.05–3.58).ConclusionThe polymorphism CHRNA5 can be considered an indirect risk factor for neoplasms in these Brazilian samples when cigarette consumption increased.
Background: The efficacy of naltrexone in the treatment of alcohol use disorder (AUD) has been associated with a set of variables not directly related with the expression of opioid receptors. All the variables have been found to be highly associated with AUD itself or more severe clinical levels of AUD. Objectives: Given the high association between alcohol metabolizing enzymes (AME) and the outcome of AUD, the present study aims to investigate the role of AME genotype variants in the treatment of AUD with naltrexone. Methods: We carried out a 12-week longitudinal clinical trial based on the treatment of AUD patients with naltrexone (N = 101), stratified by different alcohol metabolization genotypes. Genotyping was performed after the inclusion of the patients in the study, based on the individual presence of single nucleotide polymorphisms (SNPs) in the ADH (alcohol dehydrogenase)1B (ADH1B*2 and ADH1B*3), ADH1C (ADHC*1) and ALDH (aldehyde dehydrogenase) 2 (ALDH2*2) genes. The outcome of alcohol use has been monitored employing the timeline follow-back during the treatment. Results: The ADH1C*1 (Ile350Val, rs698) and ALDH2*2 (Glu504Lys, rs671) polymorphisms were associated with a better response to naltrexone treatment, whereas the ADH1B*3 (Arg370Cys, rs2066702) allelic variant showed a negative outcome. Conclusions: The present study explores a genomic setting for the treatment of AUD with naltrexone. According to our findings, the association between ADH1C*1 and ALDH2*2 variants and better outcomes suggests a successful treatment, whereas the ADH1B*3 mutated allele might lead to an unsuccessful treatment. Further studies should be performed to investigate the relationship between alcohol metabolizing genotypes, the family history of alcohol use disorders and the effect of naltrexone on the outcomes. Genotyping may be a valuable tool for precision-medicine and individualized approach, especially in the context of alcohol use disorders. The small number of subjects was the main limitation of the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.