Background The epidemiological features and outcomes of hospitalized adults with coronavirus disease 2019 (COVID-19) have been described; however, the temporal progression and medical complications of disease among hospitalized patients require further study. Detailed descriptions of the natural history of COVID-19 among hospitalized patients are paramount to optimize health care resource utilization, and the detection of different clinical phenotypes may allow tailored clinical management strategies. Methods This was a retrospective cohort study of 305 adult patients hospitalized with COVID-19 in 8 academic and community hospitals. Patient characteristics included demographics, comorbidities, medication use, medical complications, intensive care utilization, and longitudinal vital sign and laboratory test values. We examined laboratory and vital sign trends by mortality status and length of stay. To identify clinical phenotypes, we calculated Gower’s dissimilarity matrix between each patient’s clinical characteristics and clustered similar patients using the partitioning around medoids algorithm. Results One phenotype of 6 identified was characterized by high mortality (49%), older age, male sex, elevated inflammatory markers, high prevalence of cardiovascular disease, and shock. Patients with this severe phenotype had significantly elevated peak C-reactive protein creatinine, D-dimer, and white blood cell count and lower minimum lymphocyte count compared with other phenotypes (P < .01, all comparisons). Conclusions Among a cohort of hospitalized adults, we identified a severe phenotype of COVID-19 based on the characteristics of its clinical course and poor prognosis. These findings need to be validated in other cohorts, as improved understanding of clinical phenotypes and risk factors for their development could help inform prognosis and tailored clinical management for COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.