This review article elucidates the application and viability of electromagnetic fields as therapy and rehabilitation method for the treatment of musculoskeletal pathologies. All studies were found in different databases such as Science Direct, Scielo, IEEE, ProQuest, Pubmed, among others, where the search for information contemplated a period of 5 years (2016-2020). Results evidenced that electromagnetic fields used to treat musculoskeletal conditions showed positive results and improvements in reducing chronic and acute pain in different musculoskeletal pathologies such as osteoarthritis, osteoporosis, nonunions, fractures, fibromyalgia, muscular system injuries, among others. It was possible to evidence that one of the most used magnetic treatments were pulsed electromagnetic fields, which have been implemented to treat joint, muscle and nervous diseases. Additionally, several devices to generate the magnetic stimulation have been designed with a therapeutic and rehabilitation approach, which elucidate the progress in the implementation and acceptance of this type of therapeutic alternatives to treat musculoskeletal conditions. Finally, magnetic stimulation has been also implemented to enhance biomaterials function, evidencing that scaffolds stimulated with electromagnetic fields improve musculoskeletal tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.