New challenges arise in risk assessment when genetically engineered (GE) plants can persist and propagate in the environment as well as produce viable offspring. Next generation effects can be influenced by heterogeneous genetic backgrounds and unexpected effects can be triggered in interaction with environmental conditions. Consequently, the biological characteristics of the original events cannot be regarded as sufficient to conclude on hazards that may emerge in following generations. Potential hazards identified by the European Food Safety Authority (EFSA) include exacerbating weed problems, displacement and even extinction of native plant species. However, there are reasons for concern that might escape the environmental risk assessment (ERA) because EFSA only takes into account the characteristics of the original events, leaving aside unintended or unexpected next generation effects emerging from spontaneous propagation and gene flow. From our review of the publications available and the analysis of risk assessment as performed, we conclude that the risk assessment of GE organisms able to persist and spontaneously propagate in the environment actually suffers from a high degree of spatio-temporal complexity causing many uncertainties. To deal with this problem, we recommend establishing 'cut-off criteria' in risk assessment that include factual limits of knowledge. It is proposed that these criteria are applied in a specific step within risk assessment, i.e. 'spatio-temporal controllability' that uses well-defined biological characteristics to delineate some of the boundaries between known and unknowns. This additional step in risk assessment will foster robustness in the process and can substantially benefit the reliability and overall conclusiveness of risk assessment and decision-making on potential releases.
The introduction of herbicide-tolerant (HT) genetically engineered (GE) soybeans has raised new challenges for the European risk assessment of imported food and feed. Food and feed products derived from these plants may show specific patterns of chemical residues and altered nutritional composition. Furthermore, there has been a substantial increase in the usage of herbicides in soybean production due to the emergence of resistant weeds. This concerns particular glyphosate-based herbicides and also other herbicides. In this review, we give an overview of available data regarding glyphosate application on HT GE soybeans in North and South America. We have further compared this data with herbicide applications in experimental field trials conducted by the industry. We conclude that field trials carried out for risk assessment purposes do not generally represent the real agronomic conditions in commercial HT GE plant cultivation. In most cases, neither the applied dose nor the number of applications match real conditions. This finding is especially relevant for risk assessment since a review of relevant publications shows that the amount and timing of spraying glyphosate as a complementary herbicide onto HT GE plants can impact their composition; this is relevant to EFSA comparative risk assessment of GMOs. Further, closely related issues were identified that overlap with EU GMO and pesticide regulation, but are not currently considered. These issues concern indirect, cumulative and combinatorial effects as well as the assessment of mixed toxicity. Consequently, current risk assessment practice for HT GE plants cannot be considered to fulfil EU regulatory standards which require the safety of food and feed to be demonstrated. It is much more likely that concerns about the health risks of HT GE plant material used for food and feed have been underestimated. We therefore conclude that the EU risk assessment of food and feed derived from HT GE plants needs substantial improvement.
We analyze the application filed for the marketing and cultivation of genetically engineered Bt cowpea (event AAT 709A) approved in Nigeria in 2019. Cowpea (Vigna ungiguiculata) is extensively grown throughout sub-Saharan Africa and consumed by around two hundred million people. The transgenic plants produce an insecticidal, recombinant Bt toxin meant to protect the plants against the larvae of Maruca vitrata, which feed on the plants and are also known as pod borer. Our analysis of the application reveals issues of concern regarding the safety of the Bt toxins produced in the plants. These concerns include stability of gene expression, impact on soil organisms, effects on non-target species and food safety. In addition, we show deficiencies in the risk assessment of potential gene flow and uncontrolled spread of the transgenes and cultivated varieties as well as the maintenance of seed collections. As far as information is publicly available, we analyze the application by referring to established standards of GMO risk assessment. We take the provisions of the Cartagena Protocol on Biosafety (CPB) into account, of which both Nigeria and the EU are parties. We also refer to the EU standards for GMO risk assessment, which are complementary to the provisions of the CPB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.