This paper proposes a new mathematical model to evaluate the effects of artificial feeding on bee colony population dynamics. The proposed model is based on a classical framework and contains differential equations that describe the changes in the number of hive bees, forager bees, and brood cells, as a function of amounts of natural and artificial food. The model includes the following elements to characterize the artificial feeding scenario: a function to model the preference of the bees for natural food over artificial food; parameters to quantify the quality and palatability of artificial diets; a function to account for the efficiency of the foragers in gathering food under different environmental conditions; and a function to represent different approaches used by the beekeeper to feed the hive with artificial food. Simulated results are presented to illustrate the main characteristics of the model and its behavior under different scenarios. The model results are validated with experimental data from the literature involving four different artificial diets. A good match between simulated and experimental results was achieved.
We developed a nutritious, palatable, and attractive fermented diet as supplementary food for honey bees (Apis mellifera) during periods of natural food scarcity. Two types of commercial silage inoculants were tested; bacteria and a mix of bacteria and fungi were used to ferment a protein-based feed for 7, 14, or 28 days. The positive control consisted of beebread and the negative controls were sucrose solution 50%, w /v) and the unfermented protein diet. These feeds were offered, 4 g each, along with sucrose solution ad libitum, to 60 worker bees confined in plastic cages (seven replicates, 7 days). A pool of 20 bees/cage was collected on the first day (day 0) and on the 7th day of the experiment, for protein quantification by the Bradford method and for the electrophoretic profile of the proteins by SDS-polyacrylamide gel electrophoresis. The diets fermented for 7 days were the most consumed when compared with unfermented protein diet and with beebread. All the bees that ate the fermented feeds (except for the 28-day fermentation period) presented higher titers of protein in the hemolymph when compared with the bees that did not consume any protein food (negative control and day 0). The electrophoretic analysis presented a protein profile compatible with good protein expression in the hemolymph of the bees that consumed the fermented feeds, in comparison with bees that had no access to a protein diet. Consequently, we conclude that fermenting protein supplements with silage inoculants is a viable alternative for producing protein diets that are nutritious and palatable for honey bees.
Considering the importance of offering food supplementation to the swarms during dearth periods, we developed in this project an artisanal incubator for fermentation of supplementary protein diets for Apis mellifera bees, obtaining a fresh, nutritious and palatable product, made on the property, thus facilitating access to the beekeeper to this resource.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.