To explain the disappearance of medial edge epithelial (MEE) cells during palatal fusion, programmed cell death, epithelial-mesenchymal transformation, and migration of these cells to the oral and nasal epithelia have been proposed. However, MEE cell death has not always been accepted as a mechanism involved in midline epithelial seam disappearance. Similarly, labeling of MEE cells with vital lipophilic markers has not led to a clear conclusion as to whether MEE cells migrate, transform into mesenchyme, or both. To clarify these controversies, we first utilized TUNEL techniques to detect apoptosis in mouse palates at the fusion stage and concomitantly analyzed the presence of macrophages by immunochemistry and confocal microscopy. Second, we in vitro infected the MEE with the replication-defective helper-free retroviral vector CXL, which carries the Escherichia coli lacZ gene, and analyzed beta-galactosidase activity in cells after fusion to follow their fate. Our results demonstrate that MEE cells die and transform into mesenchyme during palatal fusion and that dead cells are phagocytosed by macrophages. In addition, we have investigated the effects of the absence of transforming growth factor beta(3) (TGF-beta(3)) during palatal fusion. Using environmental scanning electron microscopy and TUNEL labeling we compared the MEE of the clefted TGF-beta(3) null and wild-type mice. We show that MEE cell death in TGF-beta(3) null palates is greatly reduced at the time of fusion, revealing that TGF-beta(3) has an important role as an inducer of apoptosis during palatal fusion. Likewise, the bulging cells observed on the MEE surface of wild-type mice prior to palatal shelf contact are very rare in the TGF-beta(3) null mutants. We hypothesize that these protruding cells are critical for palatal adhesion, being morphological evidence of increased cell motility/migration.
The methyl donor S-adenosylmethionine is synthesized in mammalian cytosol by three isoenzymes. Methionine adenosyltransferase II is ubiquitously expressed, whereas isoenzymes I (homotetramer) and III (homodimer) are considered the hepatic enzymes. In this work, we identified methionine adenosyltransferase I/III in most rat tissues, both in the cytoplasm and the nucleus. Nuclear localization was the preferred distribution observed in extrahepatic tissues, where the protein colocalizes with nuclear matrix markers. A battery of mutants used in several cell lines to decipher the determinants involved in methionine adenosyltransferase subcellular localization demonstrated, by confocal microscopy and subcellular fractionation, the presence of two partially overlapping areas at the C-terminal end of the protein involved both in cytoplasmic retention and nuclear localization. Immunoprecipitation of coexpressed FLAG and EGFP fusions and gel-filtration chromatography allowed detection of tetramers and monomers in nuclear fractions that also exhibited S-adenosylmethionine synthesis. Neither nuclear localization nor matrix binding required activity, as demonstrated with the inactive F251D mutant. Nuclear accumulation of the active enzyme only correlated with histone H3K27 trimethylation among the epigenetic modifications evaluated, therefore pointing to the necessity of methionine adenosyltransferase I/III to guarantee the supply of S-adenosylmethionine for specific methylations. However, nuclear monomers may exhibit additional roles.
Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) a1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATa1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATa1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATa1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATa1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine-and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of redox-dependent mechanisms in the control of MATa1 subcellular distribution. Antioxid. Redox Signal. 20, 2541-2554.
Wilson's disease is characterized by long-term hepatic accumulation of copper leading to liver disease with reduction of S-adenosylmethionine synthesis. However, the initial changes in this pathway remain unknown and constitute the objective of the present study. Using the Long Evans Cinnamon rat model early alterations in the mRNA and protein levels, as well as in the activities of several enzymes of the methionine cycle were detected. Noteworthy, the main change was a redox mediated 80% decrease in the mRNA levels of the methionine adenosyltransferase regulatory subunit as compared to the control group. Moreover, changes in S-adenosylmethionine, S-adenosylhomocysteine, methionine and glutathione levels were also observed. In addition, in vitro experiments show that copper affects the activity and folding of methionine adenosyltransferase catalytic subunits. Taken together, these observations indicate that early copper accumulation alters methionine metabolism with a pattern distinct from that described previously for other liver diseases.
The paradigm of a cytoplasmic methionine cycle synthesizing/eliminating metabolites that are transported into/out of the nucleus as required has been challenged by detection of significant nuclear levels of several enzymes of this pathway. Here, we show betaine homocysteine S-methyltransferase (BHMT), an enzyme that exerts a dual function in maintenance of methionine levels and osmoregulation, as a new component of the nuclear branch of the cycle. In most tissues, low expression of Bhmt coincides with a preferential nuclear localization of the protein. Conversely, the liver, with very high Bhmt expression levels, presents a main cytoplasmic localization. Nuclear BHMT is an active homotetramer in normal liver, although the total enzyme activity in this fraction is markedly lower than in the cytosol. N-terminal basic residues play a role in cytoplasmic retention and the ratio of glutathione species regulates nucleocytoplasmic distribution. The oxidative stress associated with d-galactosamine (Gal) or buthionine sulfoximine (BSO) treatments induces BHMT nuclear translocation, an effect that is prevented by administration of N-acetylcysteine (NAC) and glutathione ethyl ester (EGSH), respectively. Unexpectedly, the hepatic nuclear accumulation induced by Gal associates with reduced nuclear BHMT activity and a trend towards increased protein homocysteinylation. Overall, our results support the involvement of BHMT in nuclear homocysteine remethylation, although moonlighting roles unrelated to its enzymatic activity in this compartment cannot be excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.