We develop a prioritization framework for foodborne risks that considers public health impact as well as three other factors (market impact, consumer risk acceptance and perception, and social sensitivity). Canadian case studies are presented for six pathogen-food combinations: Campylobacter spp. in chicken; Salmonella spp. in chicken and spinach; Escherichia coli O157 in spinach and beef; and Listeria monocytogenes in ready-to-eat meats. Public health impact is measured by disability-adjusted life years and the cost of illness. Market impact is quantified by the economic importance of the domestic market. Likert-type scales are used to capture consumer perception and acceptance of risk and social sensitivity to impacts on vulnerable consumer groups and industries. Risk ranking is facilitated through the development of a knowledge database presented in the format of info cards and the use of multicriteria decision analysis (MCDA) to aggregate the four factors. Three scenarios representing different stakeholders illustrate the use of MCDA to arrive at rankings of pathogen-food combinations that reflect different criteria weights. The framework provides a flexible instrument to support policymakers in complex risk prioritization decision making when different stakeholder groups are involved and when multiple pathogen-food combinations are compared.
The study used a structured expert elicitation survey to derive estimates of the foodborne attributable proportion for nine illnesses caused by enteric pathogens in Canada. It was based on a similar study conducted in the United States and focused on Campylobacter, Escherichia coli O157:H7, Listeria monocytogenes, nontyphoidal Salmonella enterica, Shigella spp., Vibrio spp., Yersinia enterocolitica, Cryptosporidium parvum, and Norwalk-like virus. For each pathogen, experts were asked to provide their best estimate and low and high limits for the proportion of foodborne illness relative to total cases. In addition, they provided background information with regard to food safety experience, including self-evaluated expertise for each pathogen on a 5-point scale. A snowball approach was used to identify 152 experts within Canada. The experts' background details were summarized using descriptive statistics. Factor analysis was used to determine whether the variability in best estimates was related to self-assessed level of expertise or other background information. Cluster analysis followed by beta function fitting was undertaken on best estimates from experts who self-evaluated their expertise 3 or higher. In parallel, Monte Carlo resampling was run using triangular distributions based on each expert's best estimate and its limits. Sixty-six experts encompassing various academic backgrounds, fields of expertise, and experiences relevant to food safety provided usable data. Considerable variation between experts in their estimated foodborne attributable proportions was observed over all diseases, without any relationship to the expert's background. Uncertainty about their estimate (measured by the low and high limits) varied between experts and between pathogens as well. Both cluster analysis and Monte Carlo resampling clearly indicated disagreement between experts for Campylobacter, E. coli O157, L. monocytogenes, Salmonella, Vibrio, and Y. enterocolitica. In the absence of more reliable estimates, the observed discrepancy between experts must be explored and understood before one can judge which opinion is the best.
This paper describes morbidity and mortality parameters for Campylobacter spp., Salmonella spp., enterohaemorrhagic Escherichia coli, Listeria spp., norovirus infections and their primary associated sequelae [Guillain-Barré syndrome (GBS), haemolytic uraemic syndrome, reactive arthropathies and Reiter's syndrome]. Data from a period of 4 years were obtained from three national databases to estimate percentage of reported cases hospitalized, mean annual hospitalization incidence rate, frequency of hospitalization by age and sex, and number of deaths. The length of hospital stay, discharge disposition, hospitalization age, and number of diagnoses per case were also extracted and summarized. In addition, we estimated that each year in Canada, there are between 126 and 251 cases of Campylobacter-associated GBS. This study provides morbidity and mortality estimates for the top enteric pathogens in Canada, including their associated sequelae, which can contribute to the quantification of the burden of illness.
The study used a structured expert elicitation survey to derive estimates of food-specific attribution for nine illnesses caused by enteric pathogens in Canada. It was based on a similar survey conducted in the United States and focused on Campylobacter spp., Escherichia coli O157:H7, Listeria monocytogenes, nontyphoidal Salmonella enterica, Shigella spp., Vibrio spp., Yersinia enterocolitica, Cryptosporidium parvum, and Norwalk-like virus. A snowball approach was used to identify food safety experts within Canada. Survey respondents provided background information as well as self-assessments of their expertise for each pathogen and the 12 food categories. Depending on the pathogen, food source attribution estimates were based on responses from between 10 and 35 experts. For each pathogen, experts divided their estimates of total foodborne illness across 12 food categories and they provided a best estimate for each category as well as 5th and 95th percentile limits for foods considered to be vehicles. Their responses were treated as triangular probability distributions, and linear aggregation was used to combine the opinions of each group of experts for each pathogen-food source group. Across the 108 pathogen-food groups, a majority of experts agreed on 30 sources and 48 nonsources for illness. The number of food groups considered to be pathogen sources by a majority of experts varied by pathogen from a low of one food source for Vibrio spp. (seafood) and C. parvum (produce) to a high of seven food sources for Salmonella spp. Beta distributions were fitted to the aggregated opinions and were reasonable representations for most of the pathogen-food group attributions. These results will be used to quantitatively assess the burden of foodborne illness in Canada as well as to analyze the uncertainty in our estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.