The corpus callosum is the major neural pathway that connects homologous cortical areas of the two cerebral hemispheres. The nature of how that interhemispheric connection is manifested is the topic of this review; specifically, does the corpus callosum serve to communicate an inhibitory or excitatory influence on the contralateral hemisphere? Several studies take the position that the corpus callosum provides the pathway through which a hemisphere or cortical area can inhibit the other hemisphere or homologous cortical area in order to facilitate optimal functional capacity. Other studies suggest that the corpus callosum integrates information across cerebral hemispheres and thus serves an excitatory function in interhemispheric communication. This review examines these two contrasting theories of interhemispheric communication. Studies of callosotomies, callosal agenesis, language disorders, theories of lateralization and hemispheric asymmetry, and comparative research are critically considered. The available research, no matter how limited, primarily supports the notion that the corpus callosum serves a predominantly excitatory function. There is evidence, however, to support both theories and the possibility remains that the corpus callosum can serve both an inhibitory and excitatory influence on the contralateral hemisphere.
The current investigation explored the diagnostic utility of reading fluency measures in the identification of children with reading disabilities. Participants were 50 children referred to a university-based clinic because of suspected reading problems and/or a prior diagnosis of dyslexia, where children completed a battery of standardized intellectual, reading achievement, and processing measures. Within this clinical sample, a group of children were identified that exhibited specific deficits in their reading fluency skills with concurrent deficits in rapid naming speed and reading comprehension. This group of children would not have been identified as having a reading disability according to assessment of single word reading skills alone, suggesting that it is essential to assess reading fluency in addition to word reading because failure to do so may result in the under-identification of children with reading disabilities.
The planum temporale is a highly lateralized cortical region, located within Wernicke’s area, which is thought to be involved in auditory processing, phonological processing, and language. Research has linked abnormal morphology of the planum temporale to developmental dyslexia, although results have varied in large part due to methodological inconsistencies in the literature. This study examined the asymmetry of the planum temporale in 29 children who met criteria for dyslexia and 26 children whose reading was unimpaired. Leftward asymmetry of the planum temporale was found in the total sample and this leftward asymmetry was significantly reduced in children with dyslexia. This reduced leftward asymmetry in children with dyslexia was due to a planum temporale that is larger in the right hemisphere. This study lends support to the idea that planum temporale asymmetry is altered in children with developmental dyslexia.
The double-deficit hypothesis of dyslexia posits that reading deficits are more severe in individuals with weaknesses in phonological awareness and rapid naming than in individuals with deficits in only one of these reading composite skills. In this study, the hypothesis was tested in an adult sample as a model of reading achievement. Participants were parents of children referred for evaluation of reading difficulties. Approximately half of all participants reported difficulty learning to read in childhood and a small subset demonstrated ongoing weaknesses in reading. Structural equation modeling results suggest that the double-deficit hypothesis is an accurate model for understanding adult reading achievement. Better reading achievement was associated with better phonological awareness and faster rapid automatized naming in adults. Posthoc analyses indicated that individuals with double deficits had significantly lower reading achievement than individuals with single deficits or no deficits.
Social comprehension involves empathy for others' experiences and appropriate responses to nonverbal cues. Previous research using magnetic resonance imaging (MRI) has suggested a relationship between brain morphology and psychiatric syndromes, such as attention-deficit hyperactivity disorder (ADHD), that typically entail social difficulties. The right hemisphere, specifically, has been associated with social skill deficits, and numerous studies have also associated ADHD with social skill deficits. No studies, however, have examined the association of ADHD subtype with both social comprehension and right-hemisphere morphology. Fifty-nine children (6-12 years old) underwent MRI, from which the right hemisphere was classified into four morphologic subtypes. Children were also grouped by ADHD subtype or clinical control status. From Behavior Assessment System for Children (BASC) items, a social comprehension subscale was constructed. Analyses revealed significant differences in social comprehension based on ADHD subtype. Differences in social comprehension based on ADHD status were especially pronounced in children with atypical right-hemisphere morphology. Thus, the diagnosis of ADHD might be associated with underlying risk in the area of social comprehension, especially for children with atypical right-hemisphere morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.