Iron is an essential nutrient for all organisms. For pathogenic fungi, iron is essential for the success of infection. Thus, these organisms have developed high affinity iron uptake mechanisms to deal with metal deprivation imposed by the host. Siderophore production is one of the mechanisms that fungal pathogens employ for iron acquisition. Paracoccidioides spp. present orthologous genes encoding the enzymes necessary for the biosynthesis of hydroxamates, and plasma membrane proteins related to the transport of these molecules. All these genes are induced in iron deprivation. In addition, it has been observed that Paracoccidioides spp. are able to use siderophores to scavenge iron. Here we observed that addition of the xenosiderophore ferrioxamine B FOB) to P. brasiliensis culture medium results in repression (at RNA and protein levels) of the SidA, the first enzyme of the siderophore biosynthesis pathway. Furthermore, SidA activity was reduced in the presence of FOB, suggesting that P. brasiliensis blocks siderophores biosynthesis and can explore siderophores in the environment to scavenge iron. In order to support the importance of siderophores on Paracoccidioides sp. life and infection cycle, silenced mutants for the sidA gene were obtained by antisense RNA technology. The obtained AsSidA strains displayed decreased siderophore biosynthesis in iron deprivation conditions and reduced virulence to an invertebrate model.
Eukaryotic cells have different mechanisms of post-transcriptional regulation.
Among these mechanisms, microRNAs promote regulation of targets by cleavage or
degradation of the mRNA. Fungi of the Paracoccidioides complex
are the etiological agents of the main systemic mycosis of Latin America. These
fungi present a plasticity to adapt and survive in different conditions, and the
presence of microRNAs-like molecules could be part of the mechanisms that
provide such plasticity. MicroRNAs produced by the host influence the
progression of this mycosis in the lungs besides regulating targets involved in
apoptosis in macrophage, activation of T and B cells and the production of
cytokines. Therefore, this work analyzed the presence of regions in the genome
of this fungus with a potential to encode microRNAs-like molecules. Here we show
by analysis of sequence similarity the presence of 18 regions, putatively coding
for microRNAs-like molecules in the Paracoccidioides
brasiliensis genome. We also described the conservation of dicer
and argonaut proteins and the cognate transcripts induced in the yeast parasitic
phase. This work represents a starting point for the analysis of the presence of
those molecules in the morphological stages of the fungus and their role in
fungal development.
Aim:During infection development in the host, Paracoccidioides spp. faces the deprivation of micronutrients, a mechanism called nutritional immunity. This condition induces the remodeling of proteins present in different metabolic pathways. Therefore, we attempted to identify membrane proteins and their regulation by zinc in Paracoccidioides lutzii.Materials & methods:Membranes enriched fraction of yeast cells of P. lutzii were isolated, purified and identified by 2D LC–MS/MS detection and database search.Results & conclusion:Zinc deprivation suppressed the expression of membrane proteins such as glycoproteins, those involved in cell wall synthesis and those related to oxidative phosphorylation. This is the first study describing membrane proteins and the effect of zinc deficiency in their regulation in one member of the genus Paracoccidioides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.