Objective The aim of this study was to evaluate the effect of nystatin on the efficacy of chlorhexidine against Streptococcus mutans in planktonic cells and mixed biofilm with Candida albicans . Material and methods S. mutans ATCC 25,175 in suspension and also combined with C. albicans ATCC 18,804 in biofilm were cultured. Minimum inhibitory concentration (MIC), crystal violet colorimetric assay, and colony-forming unit counting (CFUs/mL) were performed. Results An increased MIC of chlorhexidine against S. mutans was observed when the drugs were administered mixed in a single formulation and with time intervals in between, except for the 30-min interval. The biofilm optical density (OD) in treatments using chlorhexidine and nystatin combined did not significantly differ from chlorhexidine alone. Either in biofilm colorimetric assay or determination of CFUs, the combined treatments with nystatin administered before chlorhexidine had less effect on chlorhexidine efficacy. Conclusions Nystatin interferes with the action of chlorhexidine against S. mutans . The antimicrobial effectiveness of the combined drugs depends on their concentration, time interval used, and the planktonic or biofilm behavior of the microorganisms. Clinical relevance In view of the great number of patients that can receive a prescription of chlorhexidine and nystatin concomitantly, this study contributes to the knowledge about the effect of the combined drugs. Given the high prevalence of prescriptions of chlorhexidine and nystatin in dentistry, dental professionals should be aware of their possible antagonistic effect.
Healthcare-associated infections (HAIs) represent a global challenge and an even more staggering concern when related to microorganisms capable of resisting and surviving for long periods in the environment, such as Acinetobacter spp. Strategies that allow a reduction of pathogens from hospital environments represent an additional barrier in infection control protocols, minimizing transmission to hospitalized patients. Considering the antimicrobial properties of copper, here, the bacterial load and the presence of Acinetobacter spp. were monitored on high handling surfaces covered by 99.9% copper films on intensive and non-intensive care unit bedrooms in a tertiary care hospital. Firstly, copper-coated films were able to inhibit the adhesion and biofilm formation of A. baumannii strains in in vitro assays. On the other hand, Acinetobacter spp. were isolated from both copper-coated and uncoated surfaces in the hospital, although the majority was detected on surfaces without copper. All carbapenem-resistant A. baumannii isolates identified harbored the blaoxa-23 gene, while the A. nosocomialis isolates were susceptible to most antimicrobials tested. All isolates were susceptible to polymyxin B. Regarding the total aerobic bacteria, surfaces with copper-coated films presented lower total loads than those detected for controls. Copper coating films may be a workable strategy to mitigate HAIs, given their potential in reducing bacterial loads in nosocomial environments, including threatening pathogens like A. baumannii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.