The chemical detection of predation risk is direct when based on predator odors, or indirect when an injured conspecific or heterospecific signal it. Physiological adjustments may be necessary in parallel to defensive reactions to cope with an imminent risk. Here, we tested the effects of predator odors and conspecific chemical alarm cues in ventilation response (VR) of frillfin goby, Bathygobius soporator, because this response increases oxygen uptake for supporting behavioral tasks. No VR change was detected in response to odors of predators (catfish) that fed on conspecific, heterospecific fish (tilapia), or were deprived of food and to non-predator (tilapia) that fed chow (non-specific odor control) and odor eluent. The goby's VR, however, increased in response to conspecific alarm cues, but not to heterospecific cues or eluent. Clearly, the VR response in fish depends on the nature of the chemical cue. It is in line with 'threat-sensitive hypothesis' as a chemical cue from an injured prey might mean a foraging predator, whilst the mere presence of a predator odor might not. In addition, because VR can increase, decrease or remains unchanged in response to predation risk in other fish species (including other gobies), we reinforces the species-specific chracteristic of VR responses in fish, regarding the results obtained here for frillfin gobies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.