Plants often adapt to adverse conditions via differential growth, whereby limited resources are discriminately allocated to optimize the growth of one organ at the expense of another. Little is known about the decision-making processes that underly differential growth. In this study, we developed a screen to identify decision making mutants by deploying two tools that have been used in decision theory: a well-defined yet limited budget, as well as conflict-of-interest scenarios. A forward genetic screen that combined light and water withdrawal was carried out. This identified BRASSINOSTEROID INSENSITIVE 2 (BIN2) alleles as decision mutants with “confused” phenotypes. An assessment of organ and cell length suggested that hypocotyl elongation occurred predominantly via cellular elongation. In contrast, root growth appeared to be regulated by a combination of cell division and cell elongation or exit from the meristem. Gain- or loss- of function bin2 mutants were most severely impaired in their ability to adjust cell geometry in the hypocotyl or cell elongation as a function of distance from the quiescent centre in the root tips. This study describes a novel paradigm for root growth under limiting conditions, which depends not only on hypocotyl-versus-root trade-offs in the allocation of limited resources, but also on an ability to deploy different strategies for root growth in response to multiple stress conditions.
Operation rooms have a large environmental impact. Single-use staplers (SUS) are widely used surgical instruments that contribute to resource consumption and waste generation, whereas multi-use staplers (MUS) can greatly reduce the environmental impact of surgery. The staple lines are often reinforced with buttressing material to prevent leaks and bleeding. We explore current clinical practice and environmental concerns regarding stapling and buttressing, as well as the environmental impact of staple line buttressing in sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). Furthermore, we extend this analysis by taking packaging material and the lithium in power supplies into consideration. Materials and Methods: A survey of bariatric surgeons was conducted to assess stapler and buttressing use in clinical practice. We deconstructed and analyzed the product and packaging composition of a commonly used SUS with separate staple line reinforcement (Echelon Flex™ with Echelon Endopath™, Ethicon) and MUS (Signia™ with Tri-Staple™ reinforced reloads, Medtronic), where the buttressing material was delivered separately or already incorporated in the reload cartridge, respectively. Both systems were compared regarding total waste generation, resource use (determined as total material requirement), and greenhouse gas emission caused by their lithium content. Results: 60 mm cartridges were most frequently used in bariatric surgery, and 67% of surveyed surgeons applied staple line reinforcement. MUS with pre-attached buttressing resulted in a reduction of waste, material consumption, and greenhouse gas emissions compared to SUS with separate buttressing: they reduced product waste by 40% (SG and RYBG), packaging waste by 60% (SG) and 57% (RYGB), resource consumption by more than 90%, and greenhouse gas emissions related to the lithium in the batteries by 99.7%. Preloaded buttressing produced less waste than separate buttressing per stapler firing. Conclusion:The environmental impact of surgery can be greatly reduced by using MUS with pre-attached buttressing rather than SUS with separate buttressing.
Plants often adapt to adverse conditions via differential growth, whereby limited resources are discriminately allocated to optimize the growth of one organ at the expense of another. Little is known about the decision-making processes that underly differential growth. In this study, we developed a screen to identify decision making mutants by deploying two tools that have been used in decision theory: a well-defined yet limited budget, as well as conflict-of-interest scenarios. A forward genetic screen that combined light and water withdrawal was carried out. This identified BRASSINOSTEROID INSENSITIVE 2 (BIN2) alleles as decision mutants with "confused" phenotypes. An assessment of organ and cell length suggested that hypocotyl elongation occurred predominantly via cellular elongation. In contrast, root growth appeared to be regulated by a combination of cell division and cell elongation or exit from the meristem. Brassinosteroid signalling mutants were most severely impaired in their ability to adjust cell geometry in the hypocotyl and cell elongation as a function of distance from the quiescent centre in the root tips. This study describes a novel paradigm for root growth under limiting conditions, which depends not only on hypocotyl-versus-root trade-offs in the allocation of limited resources, but also on an ability to deploy different strategies for root growth in response to multiple stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.