Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MALDI MSI) has become a powerful tool with a high potential relevance for the analysis of biomolecules in tissue samples in the context of diseases like cancer and cardiovascular or cardiorenal diseases. In recent years, significant progress has been made in the technology of MALDI MSI. However, a more systematic optimization of sample preparation would likely achieve an increase in the molecular information derived from MALDI MSI. Therefore, we have employed a systematic approach to develop, establish and validate an optimized “standard operating protocol” (SOP) for sample preparation in MALDI MSI of formalin-fixed paraffin-embedded (FFPE) tissue sample analyses within this study. The optimized parameters regarding the impact on the resulting signal-to-noise (S/N) ratio were as follows: (i) trypsin concentration, solvents, deposition method, and incubation time; (ii) tissue washing procedures and drying processes; and (iii) spray flow rate, number of layers of trypsin deposition, and grid size. The protocol was evaluated on interday variability and its applicability for analyzing the mouse kidney, aorta, and heart FFPE tissue samples. In conclusion, an optimized SOP for MALDI MSI of FFPE tissue sections was developed to generate high sensitivity, to enhance spatial resolution and reproducibility, and to increase its applicability for various tissue types. This optimized SOP will further increase the molecular information content and intensify the use of MSI in future basic research and diagnostic applications.
Acute kidney injury (AKI) represents a common complication in critically ill patients that is associated with increased morbidity and mortality. In a murine AKI model induced by ischemia-reperfusion-injury (IRI), we show that glutamine significantly decreases kidney damage and improves kidney function. We demonstrate that glutamine causes transcriptomic and proteomic reprogramming in murine renal tubular epithelial cells (TECs), resulting in decreased epithelial apoptosis, neutrophil recruitment and improved mitochondrial functionality and respiration provoked by an ameliorated oxidative phosphorylation. We identify the proteins glutamine gamma glutamyltransferase 2 (Tgm2) and apoptosis signal-regulating kinase (Ask1) as the major targets of glutamine in apoptotic signaling. Furthermore, the direct modulation of the Tgm2-HSP70 signalosome and reduced Ask1 activation result in decreased JNK activation leading to diminished mitochondrial intrinsic apoptosis in TECs. Glutamine administration attenuated kidney damage in vivo during AKI and TEC viability in vitro under inflammatory or hypoxic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.