Both underweight and obesity have been associated with increased mortality1,2. Underweight, defined as body mass index (BMI) ≤ 18,5 kg/m2 in adults 3 and ≤ −2 standard deviations (SD) in children4,5, is the main sign of a series of heterogeneous clinical conditions such as failure to thrive (FTT) 6–8, feeding and eating disorder and/or anorexia nervosa9,10. In contrast to obesity, few genetic variants underlying these clinical conditions have been reported 11, 12. We previously demonstrated that hemizygosity of a ~600 kb region on the short arm of chromosome 16 (chr16:29.5–30.1Mb), causes a highly-penetrant form of obesity often associated with hyperphagia and intellectual disabilities13. Here we show that the corresponding reciprocal duplication is associated with underweight. We identified 138 (132 novel cases) duplication carriers (108 unrelated carriers) from over 95,000 individuals clinically-referred for developmental or intellectual disabilities (DD/ID), psychiatric disorders or recruited from population-based cohorts. These carriers show significantly reduced postnatal weight (mean Z-score −0.6; p=4.4×10−4) and BMI (mean Z-score −0.5; p=2.0×10−3). In particular, half of the boys younger than 5 years are underweight with a probable diagnosis of FTT, while adult duplication carriers have an 8.7-fold (p=5.9×10−11; CI_95=[4.5–16.6]) increased risk of being clinically underweight. We observe a significant trend towards increased severity in males, as well as a depletion of male carriers among non-medically ascertained cases. These features are associated with an unusually high frequency of selective and restrictive feeding behaviours and a significant reduction in head circumference (mean Z-score −0.9; p=7.8×10−6). Each of the observed phenotypes is the converse of one reported in carriers of deletions at this locus, correlating with changes in transcript levels for genes mapping within the duplication but not within flanking regions. The reciprocal impact of these 16p11.2 copy number variants suggests that severe obesity and being underweight can have mirror etiologies, possibly through contrasting effects on eating behaviour.
The underlying cause of mental retardation remains unknown in up to 80% of patients. As chromosomal aberrations are the most common known cause of mental retardation, several new methods based on FISH, PCR, and array techniques have been developed over recent years to increase detection rate of subtle aneusomies initially of the gene rich subtelomeric regions, but nowadays also genome wide. As the reported detection rates vary widely between different reports and in order to compare the diagnostic yield of various investigations, we analyzed the diagnostic yield of conventional karyotyping, subtelomeric screening, molecular karyotyping, X‐inactivation studies, and dysmorphological evaluation with targeted laboratory testing in unselected patients referred for developmental delay or mental retardation to our cytogenetic laboratory (n = 600) and to our genetic clinic (n = 570). In the cytogenetic group, 15% of patients showed a disease‐related aberration, while various targeted analyses after dysmorphological investigation led to a diagnosis in about 20% in the genetic clinic group. When adding the patients with a cytogenetic aberration to the patient group seen in genetic clinic, an etiological diagnosis was established in about 40% of the combined study group. A conventional cytogenetic diagnosis was present in 16% of combined patients and a microdeletion syndrome was diagnosed in 5.3%, while subtelomeric screening revealed only 1.3% of causes. Molecular karyotyping with a 10 K SNP array in addition revealed 5% of underlying causes, but 29% of all diagnoses would have been detectable by molecular karyotyping. In those patients without a clear diagnosis, 5.6% of mothers of affected boys showed significant (>95%) skewing of X‐inactivation suggesting X‐linked mental retardation. The most common diagnoses with a frequency of more than 0.5% were Down syndrome (9.2%), common microdeletion 22q11.2 (2.4%), Williams–Beuren syndrome (1.3%), Fragile‐X syndrome (1.2%), Cohen syndrome (0.7%), and monosomy 1p36.3 (0.6%). From our data, we suggest the following diagnostic procedure in patients with unexplained developmental delay or mental retardation: (1) Clinical/dysmorphological investigation with respective targeted analyses; (2) In the remaining patients without an etiological diagnosis, we suggest conventional karyotyping, X‐inactivation screening in mothers of boys, and molecular karyotyping, if available. If molecular karyotyping is not available, subtelomeric screening should be performed. © 2006 Wiley‐Liss, Inc.
Pitt-Hopkins syndrome is a rarely reported syndrome of so-far-unknown etiology characterized by mental retardation, wide mouth, and intermittent hyperventilation. By molecular karyotyping with GeneChip Human Mapping 100K SNP arrays, we detected a 1.2-Mb deletion on 18q21.2 in one patient. Sequencing of the TCF4 transcription factor gene, which is contained in the deletion region, in 30 patients with significant phenotypic overlap revealed heterozygous stop, splice, and missense mutations in five further patients with severe mental retardation and remarkable facial resemblance. Thus, we establish the Pitt-Hopkins syndrome as a distinct but probably heterogeneous entity caused by autosomal dominant de novo mutations in TCF4. Because of its phenotypic overlap, Pitt-Hopkins syndrome evolves as an important differential diagnosis to Angelman and Rett syndromes. Both null and missense mutations impaired the interaction of TCF4 with ASCL1 from the PHOX-RET pathway in transactivating an E box-containing reporter construct; therefore, hyperventilation and Hirschsprung disease in patients with Pitt-Hopkins syndrome might be explained by altered development of noradrenergic derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.